
Adapting to Non-stationarity in Online Learning

by

Andrew Jacobsen

A thesis submitted in partial fulőllment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Andrew Jacobsen, 2024

Abstract

Over the last decade, machine learning (ML) has lead to advances in many őelds, such as com-

puter vision, online decision-making, robotics, natural language processing, and many others. The

algorithms driving these successes typically have one or more user-speciőed free variables called

hyperparameters, or simply parameters, which must be set prior to running the algorithm. These

parameters can have a signiőcant effect on an algorithm’s performance in practice, and setting them

optimally requires problem-dependent knowledge that the practitioner does not typically have access

to, such as statistics of the underlying data-generating process. Common practice is to empirically

“tunež the hyperparameters for a speciőc problem setting by repeatedly guessing values, observing

the resulting performance, and adjusting the hyperparameter values accordingly. However, this

practice is ultimately heuristic in nature and generally fails to provide meaningful performance

guarantees, especially if the problem may change or drift over time.

The aim of this thesis is to develop learning algorithms which make meaningful performance

guarantees in the absence prior knowledge, obviating the need to tune hyperparameters entirely.

We focus in particular on developing algorithms which are suitable for non-stationary problem

settings, in which the unknown problem solution may change arbitrarily over time. We study this

problem through the lens of online learning, a framework used to model learning from a stream of

data. We present the őrst online learning algorithms that achieve optimal performance guarantees

in the complete absence of prior knowledge about the problem solution, even if it changes over time.

We achieve this feat in the standard setting of Lipschitz losses, as well as under a relaxation of the

Lipschitz condition which allows for unbounded losses, leading to novel results for stationary problem

settings and saddle-point optimization as well. Our efforts culminate in a universal algorithm for

online linear regression, which requires no prior knowledge of any kind to make optimal performance

guarantees, even in the face of non-stationary data.

ii

Preface

This thesis is based off of a series of publications developed in collaboration with Ashok Cutkosky.

Ashok assisted with editing each of the papers, occasional bug őxes, and contributed intellectually

via weekly discussions. Everything included in this thesis is otherwise my own original work.

Chapters 4 and 6, and Section 9.1, as well as their corresponding appendices, are based on

Jacobsen and Cutkosky (2022). The mirror descent equality in Appendix A.1 is a straight-forward

generalization of the one from Jacobsen and Cutkosky (2022) to account for an additional “post-

hoc adjustmentž that we occasionally leverage. Chapter 7, Section 9.2, and their corresponding

appendices, are based on Jacobsen and Cutkosky (2023). Chapter 10 and its appendices are based

on Jacobsen and Cutkosky (2024).

iii

Don’t quote me in your PhD thesis.

ś Cameron Linke, 2019.

iv

Acknowledgements

I’d like to thank Martha White for the incredible level of freedom I was entrusted with during my

PhD. This freedom allowed me the time and space to approach things on precisely my own terms,

and to develop into an independent researcher with unique perspectives in my őeld. I’d also like to

thank Martha White, Adam White, Martin Mueller, and Alex Brown for all of the guidance during

the early stages of my academic career.

There are many incredible people in the University of Alberta community who have contributed

to the researcher that I developed into today by inspiring or helping me in one way or another.

Some of these people include: Csaba Szepesevari, Matthew Schlegel, Andy Patterson, Cam Linke,

Roshan Shariff, and Kris De Asis.

Most of all, I owe a huge debt of gratitude to Ashok Cutkosky. Ashok had absolutely no good

reason to work with me when we met. I was not some promising up-and-comer in the online learning

community and have never had a particularly strong background in rigorous mathematics. I had no

publications in online learning, and my knowledge of online learning was completely self-taught and

full of holes. I was literally just some random guy who started emailing him and was excited about

the work he was publishing. Despite this, Ashok agreed to let me visit his lab for a summer, and

the guidance I received during this time completely changed the trajectory of my academic career,

enabling me to develop a unique and versatile approach to online learning which lead to the the

exciting results that make up this thesis. I now conődently consider my self an expert in this topic,

and I don’t think it would have ever happened were it not for this initial act of kindness and blind

faith from Ashok. I hope that I can one day pay this forward to my own students, and have the

same impact on their development as researchers that Ashok has had on mine.

v

Contents

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Outline and Contributions . 2

1.2 Notations . 4

I Foundations 5

2 Online Learning 6

2.1 Minimizing Regret . 8

2.2 Adaptivity in Online Learning . 10

2.2.1 Principles for Adaptive Algorithm Design . 13

3 Learning in Dynamic Environments 18

3.1 Dynamic Regret . 19

3.2 Strongly-adaptive Regret . 21

4 Centered Mirror Descent 23

4.1 Incorporating Post-hoc Adjustments . 27

4.2 Conclusions . 29

vi

II Adaptivity in Stationary Settings 30

5 Overview of Part II 31

6 Lipschitz Losses 34

6.1 Parameter-free Learning . 34

6.2 Lipschitz Adaptivity and Scale-free Learning . 35

6.3 Adapting to Gradient Variability . 38

6.4 Trade-offs in the Horizon Dependence . 40

6.5 Conclusions . 42

7 Beyond Lipschitz Losses 43

7.1 Online Learning with Quadratically Bounded Losses . 44

7.2 Unconstrained Saddle-point Optimization . 48

7.2.1 Example: Bilinearly-coupled saddle-points . 51

7.3 Conclusions . 52

III Adapting to Non-stationarity 53

8 Overview of Part III 54

9 Non-stationarity in Online Learning 57

9.1 Lipschitz Losses . 57

9.1.1 A Simple Reduction for Dynamic Regret in Unbounded Domains 61

9.1.2 Amortized Computation for Dynamic Regret . 62

9.2 Unbounded Losses . 63

9.3 Conclusions . 68

10 Non-stationarity in Online Linear Regression 69

10.1 The Vovk-Azoury-Warmuth Forecaster . 71

10.2 Dynamic Regret via Discounting . 72

vii

10.2.1 Small-loss Bounds via Self-conődent Predictions 77

10.2.2 Dimension-dependent Lower Bound . 78

10.3 Learning the Optimal Discount Factor . 79

10.4 Strongly-Adaptive Guarantees . 83

10.5 Conclusion . 84

Appendices 94

A Part I (Foundations) 96

A.1 A Strong Mirror Descent Lemma . 96

A.2 Proofs for Chapter 4 (Centered Mirror Descent) . 101

A.2.1 Proof of Lemma 4.0.1 . 101

A.2.2 Proof of Lemma 4.0.2 . 102

A.2.3 Proof of Lemma 4.1.1 . 104

A.3 Supporting Lemmas . 104

B Part II (Adaptivity in Stationary Settings) 107

B.1 Details for Chapter 6 . 107

B.1.1 Proofs for Section 6.1 (Parameter-free Learning) 107

B.1.2 Proofs for Section 6.3 (Adapting to Gradient Variability) 112

B.1.3 Proofs for Section 6.2 (Lipschitz Adaptivity and Scale-free Learning) 114

B.1.4 Proofs for Section 6.4 (Trade-offs in the Horizon Dependence) 120

B.2 Details for Chapter 7 . 124

B.2.1 Proofs for Section 7.1 (Online Learning with Quadratically Bounded Losses) . 124

B.2.2 Multi-scale Experts Algorithm . 130

C Part III (Adapting to Non-stationarity) 135

C.1 Details for Chapter 9 . 135

C.1.1 Proofs for Section 9.1 (Lipschitz Losses) . 135

C.1.2 Proofs for Section 9.2 (Unbounded Losses) . 145

viii

C.2 Details for Chapter 10 . 167

C.2.1 Proofs for Section 10.2 (Dynamic Regret via Discounting) 167

C.2.2 Proofs for Section 10.2.1 (Small-loss Bounds via Self-conődent Predictions) . 179

C.2.3 Proofs for Section 10.2.2 (Dimension-dependent Lower Bound) 182

C.2.4 Proofs for Section 10.3 (Learning the Optimal Discount Factor) 184

C.2.5 Proofs for Section 3.2 (Strongly-Adaptive Guarantees) 194

C.2.6 Adaptive Fixed-share . 197

C.2.7 Supporting Lemmas . 201

ix

Chapter 1

Introduction

Over the last decade, machine learning (ML) has lead to advances in many őelds, such as computer

vision (LeCun, Bengio, and Hinton 2015), online decision-making (Mnih et al. 2015; Silver et al.

2016; Abbeel et al. 2007; Ng et al. 2006), robotics (Lillicrap et al. 2015), natural language process-

ing (Bahdanau, Cho, and Bengio 2014), and many others. The algorithms driving the successes

in ML typically have one or more user-speciőed free variables called hyperparameters, or simply

parameters, which must be set prior to running the algorithm. These parameters can have a signiő-

cant effect on an algorithm’s performance in practice, and setting them optimally generally requires

problem-dependent a priori knowledge that the practitioner does not have access to. In practice, it

is common to empirically “tunež the hyperparameters for a speciőc problem setting by repeatedly

guessing values, observing the resulting performance, and adjusting the hyperparameters accord-

ingly. However, this practice is ultimately heuristic in nature Ð there are typically no guarantees

that a performant hyperparameter setting will be identiőed, or even what parameter ranges one

should search over. Even if one chooses to accept these heuristic tuning procedures as a necessary

evil, the use of free hyperparameters in algorithm design leads to several signiőcant impediments to

progress.

First, hyperparameters tend to exhibit high sensitivity to problem-dependent quantities

Ð that is, the hyperparameters may have to be re-tuned if certain aspects of the problem change.

This is a major stumbling block for the application of ML in real-world settings, as real-world prob-

lems can change over time. For example, an autonomous robot operating in the real world will be

subject to the daily wear-and-tear of its hardware components; this can result in inconsistencies in

the measurements used to inform decision-making, and as a result may require different hyperpa-

rameter settings to compensate for this additional uncertainty in its measurements. More generally,

environmental changes can occur suddenly and without warning in the real world, requiring that the

agent be able to adapt to these new conditions without being given the opportunity to re-calibrate

1

its hyperparameters. In any such situations, traditional algorithms could exhibit unexpected or even

unsafe behavior in deployment if the new conditions are sufficiently different from those expected a

priori by the human designer.

Second, even in more “well-behavedž problem settings, one is still left to face the reality that

parameter tuning is often infeasible in real-world domains . Unlike in simulation domains,

where the learner can experience a large number of examples in short periods of time, real-world

applications are often limited by physical constraints. In applications such as robotics, for example,

actions can take orders of magnitude longer to execute than they would in simulation domains

since the actions correspond to real, physical movements. This can make thorough hyperparameter

tuning impossible or prohibitively expensive in practice.

Finally, in addition to being a poor use of a highly-trained expert’s time, this tuning process

can be incredibly inefficient and expensive . Each day thousands of hours of computation

is spent by researchers and practitioners tuning these hyperparameters. Experiments can be run

hundreds of times tuning the parameters of a single algorithm, and a thorough experiment typically

requires tuning multiple hyperparameters of multiple algorithms. Not only is this a wasteful use of

high-performance computing (HPC) facilities, which come at a high cost to operate and maintain,

but it raises valid concerns about the environmental sustainability of ML research. Indeed, HPC

facilities require massive amounts of energy resources to operate, and power is in fact one of the

main operational expenses of these facilities (Couchman et al. 2015). Thus, any progress in reducing

the need for such excessive parameter tuning could have signiőcant impact on the efficiency, the

cost, and the sustainability of research in ML.

This thesis is dedicated to the design of algorithms that achieve provable performance guarantees

under minimal assumptions/prior knowledge, without tuning any hyperparameters, whatsoever. A

major focus of this work is to develop algorithms which achieve these goals even in the face of

problems in which may change in arbitrary and unpredictable ways over time, a property which we

will broadly refer to as non-stationarity. This is in itself a very challenging type of adaptivity to

achieve, and requires that we develop exceptionally strong tools and methodologies to achieve our

goal. As such, as a result of our development we are able to make several substantial contributions

advancing the state-of-the-art in online learning for both stationary and non-stationary problem

settings alike.

1.1 Outline and Contributions

The remainder of this document is organized as follows.

Part I: Foundations. This thesis formalizes learning in the online learning framework, which

is a framework for designing and analyzing algorithms that learn incrementally from a stream of

2

data. In Part I we introduce the framework and provide a brief overview of of the hyperparameter-

free algorithms that have emerged from this framework in recent years (Chapter 2), as well as

common strategies for designing these algorithms (Section 2.2.1). In Chapter 4 we introduce our

own approach and the algorithmic framework that will be used to design every algorithm in this

thesis: the Centered Mirror Descent framework (Jacobsen and Cutkosky 2022).

Part II: Adaptivity in Stationary Settings. Part II is dedicated to hyperparameter-

free learning in stationary settings. As a warm-up, in Chapter 6 we őrst apply our framework

from Chapter 4 to design several new parameter-free algorithms in settings with bounded gradients

(Lipschitz losses), achieving several novel results (Sections 6.3 and 6.4) and improving the guarantees

of existing approaches (Sections 6.1 and 6.2).

In Chapter 7 we turn our attention to a problem setting in which the losses and gradients

may potentially be unbounded. We provide the őrst parameter-free algorithms for online learning

which achieve meaningful regret guarantees for non-Lipschitz losses in unbounded domains. We

also provide a matching lower bound demonstrating that our result is unimprovable without further

assumptions. Then, in Section 7.2 we use this approach to provide the őrst parameter-free algorithms

for saddle-point optimization which converge in duality-gap without assuming strong convexity or

bounded decision sets. This result provides as a special case algorithms for bilinearly-coupled saddle-

point problems, which capture many notable problem settings, such as off-policy policy evaluation

in reinforcement learning, quadratic games, and regularized empirical risk minimization (Du et al.

2022).

Part III: Adapting to Non-stationarity. The őnal part of the thesis is dedicated to

hyperparameter-free learning in the face of non-stationarity. In Chapter 9, we provide the őrst

algorithms for online learning which achieve meaningful guarantees in the absence of all assumptions

on the problem “solutionž. In particular, our algorithms automatically adapt to notions of complexity

of any benchmark sequence of decisions, which may be stationary, non-stationary, and could at any

point be arbitrarily “far awayž from the learner’s own decisions. We begin by providing an algorithm

for the setting of Lipschitz losses in Section 9.1. Then, as in Part II, we extend our result to the

unbounded loss setting, and provide a matching lower bound for this new setting (Section 9.2).

In Chapter 10, we shift our focus to the related problem setting of online linear regression. In

this setting, we develop algorithms that are not only hyperparameter free but universal : they utilize

no instance-dependent prior knowledge of any kind yet still automatically adapt to natural notions

of “difficultyž of any given problem instance without any hyperparameter tuning. We provide a

matching lower bound demonstrating that our result is unimprovable in general. We also provide

a simple extension of our result which makes a matching guarantee on all intervals of time simul-

taneously. Our result is the őrst instance of such “all-intervalsž guarantees (called strongly-adaptive

guarantees in the online learning literature) being achieved without any boundedness assumptions.

3

1.2 Notations

Throughout this document we will use the following common notations. We denote [N∥ ≙ {1, . . . ,N},
N ≙ {0,1, . . .}, and 1N is the N -dimensional vector of ones. The N -dimensional simplex is denoted

∆N . The indicator function IW (⋅) ≙ I(⋅ ∈ W) is the function such that IW (w) ≙ 0 if w ∈ W and

IW (w) ≙∞ otherwise. For any sequence a1, a2, . . ., we denote amax ≙maxt ∣at∣. Positive thresholding

is denoted by [⋅∥+ ≙max{⋅,0}. We denote a∨b ≙max{a, b} and a∧b ≙min{a, b}. We use the short-

hand Clip[a,b∥(y) ≙ (y∨a)∧b and the compressed sum notations gi∶j ≙ ∑jt≙i gt and ∥g∥2a∶b ≙ ∑bt≙a ∥gt∥2.
For brevity, we occasionally abuse notation by letting ∇f(x) denote an arbitrary element of ∂f(x).
The Bregman divergence w.r.t. a differentiable function ψ is Dψ(x∣y) ≙ ψ(x)−ψ(y)−⟨∇ψ(y), x − y⟩.
Given a positive deőnite matrix M , the weighted norm w.r.t. M is ∥w∥M ≙√⟨w,Mw⟩. When un-

speciőed, ∥⋅∥ is assumed to be the Euclidean norm. The notation O(⋅) hides constants, Ô(⋅) hides

constants and log(log) terms, and Õ(⋅) hides up-to log factors.

4

Part I

Foundations

5

Chapter 2

Online Learning

This thesis studies learning through the lens of the online learning framework, which is an elegant

framework for analyzing and designing algorithms which learn incrementally from a stream of data

(Zinkevich 2003; Nicolo Cesa-Bianchi and Lugosi 2006; Shalev-Shwartz and Singer 2007; McMahan

2017; Orabona 2019). This chapter provides a broad overview of the results and techniques in online

learning, and reviews some of the ubiquitous design philosophies used in problems of this nature.

In the online learning framework, learning is formalized as a game played between a learner and

an adversary (sometimes alternatively referred to as nature or the environment). On each round

of the game, the learner makes a choice wt ∈ W from some convex decision set W ⊆ Rd, then the

adversary reveals a loss function ℓt ∶W → R and the learner pays a penalty of ℓt(wt).
Algorithm 1: Online Learning Protocol

1 for t ≙ 1 ∶ T do

2 Learner plays wt ∈W ⊆ R
d

3 Adversary reveals loss function ℓt ∶W → R

4 Learner suffers a loss of ℓt(wt)
5 end

The standard performance metric in this setting is regret Ð the total loss of the learner compared

against the total loss of some őxed benchmark u ∈W , called the comparator :

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(u).
Intuitively, one may think of the benchmark u ∈W as being a “batchž solution: if the losses ℓ1, . . . , ℓT

were given up front, one could choose a point of best-őt to make the function w ↦ 1
T ∑Tt≙1 ℓt(w)

small. Hence, we are typically interested in online algorithms which guarantee sublinear regret

6

(limT→∞RT (u)/T ≙ 0), as they perform as well on average as being able to choose with perfect

hindsight.

The beneőt of the preceeding formulation is that we avoid making any particular assumptions

on the process generating the loss functions until they’re relevant or necessary, yet we are still able

to model a wide variety of problems by introducing constraints on the loss functions and adversary.

In this thesis, a consistent limitation we’ll impose is that the losses ℓt are convex.

Deőnition 2.0.1. Let W be a convex subset of a real vector space. Then ℓ ∶W → R is convex if

ℓ(αx + (1 − α)y) ≤ αℓ(x) + (1 − α)ℓ(y)
for any x, y ∈W and α ∈ [0,1∥.

For our purposes, the important property possessed by convex functions is that they can be

lower-bounded by a őrst-order approximation given by its subgradients.

Deőnition 2.0.2. Let ℓ ∶W → R be a convex function. A subgradient of ℓ at x ∈W is any vector

g ∈W ∗ satisfying

ℓ(x) ≥ ℓ(y) + ⟨g, x − y⟩ , ∀y ∈W

The set of all subgradients at x ∈W is the subdifferential of ℓ at x and is denoted ∂ℓ(x). This

property lets us bound the regret above by the regret against linear losses: letting gt ∈ ∂ℓt(wt) for

all t, we can write

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(u) ≤ T

∑
t≙1

⟨gt,wt − u⟩ . (2.1)

In this way, any algorithm A guaranteeing sublinear regret on linear losses can be used to achieve

sublinear regret on convex losses as well Ð we simply choose any gt ∈ ∂ℓt(wt) and pass A the

linearized losses x ↦ ⟨gt, x⟩. This reduction lets us focus our attention on designing algorithms

for online linear optimization. Throughout this thesis, we let will frequently use gt to denote an

arbitrary element of ∂ℓt(wt). We will also occasionally write ∇ℓt(wt) to denote an arbitrary element

of ∂ℓt(wt) when appropriate (e.g., to emphasize the dependence on wt).

The second common assumption we will make is that the losses ℓt have bounded subgradients

(i.e. the losses are Lipschitz).

Deőnition 2.0.3. A function ℓ ∶W → R is G-Lipschitz w.r.t. ∥⋅∥ if for every x, y ∈W ,

∣f(x) − f(y)∣ ≤ G ∥x − y∥ .
7

If ℓ is convex, then ℓ is G-Lipschitz if and only if for every x ∈ W and g ∈ ∂ℓ(x), it holds that∥g∥ ≤ G. For the rest of this chapter we will assume that the losses are G-Lipschitz for simplicity,

but we will relax this assumption later in Chapter 7.

Finally, we will occasionally consider losses which are smooth, meaning that they can be upper-

bounded by a quadratic approximation.

Deőnition 2.0.4. A convex function ℓ ∶W → R is L-smooth w.r.t. ∥⋅∥ if for every x, y ∈W ,

ℓ(x) ≤ ℓ(y) + ⟨∇ℓ(y), x − y⟩ + L
2
∥x − y∥2 .

For a detailed introduction to properties of smooth losses, we recommend X. Zhou (2018).

2.1 Minimizing Regret

To help build intuitions and get a feel for what kinds of guarantees we should expect in this problem

setting, let us review the regret guarantee of the quintessential online learning algorithm: online

(sub)gradient descent. Let W be a convex set in R
d, and consider linear losses ℓt(w) ≙ ⟨gt,w⟩.

Starting from w1 ∈W , on each round update

wt+1 ≙ ΠW (wt − ηgt),
where η > 0 and ΠW (x) ≙ argminw∈W ∥w − x∥ is the projection of x onto W . Let us assume for

simplicity that W ≙ Rd, so that wt+1 ≙ wt − ηgt on each round. Now, for any u ∈W we may begin

by investigating how wt+1 relates to u over time: in particular, observe that

∥wt+1 − u∥2 ≙ ∥wt − ηgt − u∥2 ≙ ∥wt − u∥2 + η2 ∥gt∥2 − 2η ⟨gt,wt − u⟩ ,
hence, re-arranging, we have

⟨gt,wt − u⟩ ≙ ∥wt − u∥2 − ∥wt+1 − u∥2
2η

+
η

2
∥gt∥2 ,

8

so summing over t ∈ [T ∥ we őnd that the regret is precisely

RT (u) ≙ T

∑
t≙1

⟨gt,wt − u⟩ ≙ T

∑
t≙1

∥wt − u∥2 − ∥wt+1 − u∥2
2η

+
η

2

T

∑
t≙1

∥gt∥2
≙
∥u −w1∥2 − ∥u −wT+1∥2

2η
+
η

2

T

∑
t≙1

∥gt∥2
≤
∥u −w1∥2

2η
+
η

2

T

∑
t≙1

∥gt∥2 .
The step-size η which minimizes the RHS above is η ≙

∥u−w1∥√
∑
T
t≙1∥gt∥2 , which would yield

RT (u) ≤ ∥u −w1∥
¿ÁÁÀ T

∑
t≙1

∥gt∥2.
Moreover, a modest generalization of this argument shows that the same result also holds in con-

strained settings, where W ⊂ Rd. The proof is standard in the literature (see, e.g., Orabona 2019,

Theorem 2.13).

Proposition 2.1.1. Let ℓ1, . . . , ℓT be arbitrary convex loss functions. Let W be a convex set in R
d,

w1 ∈W , and set wt+1 ≙ ΠW (wt − ηgt) for some η > 0 and gt ∈ ∂ℓt(wt). Then for any u ∈W ,

RT (u) ≤ ∥w1 − u∥2
2η

+
η

2

T

∑
t≙1

∥gt∥2 .
Moreover, setting η ≙ η∗ ∶≙

∥w1−u∥√
∑
T
t≙1∥gt∥2 guarantees

RT (u) ≤ ∥w1 − u∥
¿ÁÁÀ T

∑
t≙1

∥gt∥2. (2.2)

This result has several desirable features:

1. It is essentially tight (nearly a regret equality in the unconstrained OLO setting, in fact!), so

we can not hope to get any signiőcantly tighter result than Equation (2.2). Indeed, as we will

see in Section 2.2, this bound is actually too good to be achieved without access to rather

strong prior knowledge.

2. It is worst-case optimal : in a domain W with supx,y∈W ∥x − y∥ ≤ D, it can be shown that

any algorithm must incur at least RT (u) ≥ Ω(DG√T) regret in the worst case (See e.g.

Orabona and Pál (2018) Theorem 5; Orabona (2019) Theorem 5.1; Hazan (2019) Theorem

3.2). Equation (2.2) always matches this lower bound in the worst-case.

9

3. It is data-dependent : the bound automatically adapts to the “easinessž of the problem. If

the gradients are “smallž or the learner has sufficient prior knowledge to be able to choose w1

reasonably “closež to u, regret can automatically be much smaller than the worst-case bound.

4. It holds even in unbounded domains1: nowhere in the analysis is it necessary to assume that

the decision set is bounded (e.g. supx,y∈W ∥x − y∥ ≤ D for some D). Instead, the bound is

adaptive to the initial distance from the comparator ∥u −w1∥.
5. It is dimension-free: there is no explicit penalty related to the dimension of the space W , so

the performance naturally scales to high-dimensional data.

Of course, we can not actually implement this algorithm in practice Ð setting η∗ ≙
∥w1−u∥√
∑
T
t≙1∥gt∥2

would require a priori knowledge of the comparator u as well as all of the future subgradients gt.

Because of this, in practice η is left as a free variable referred to as a hyperparameter, and its value

is empirically “tunedž by running the algorithm with many different values for η and measuring the

performance. Not only is this an error-prone and computationally expensive process, but we will

also tend to lose the worst-case robustness that made the algorithm interesting in the őrst place!

Instead, over the last decade there has been a concerted effort to develop algorithms which adapt

to these unknown quantities on-the-ŕy. In the following section we will review basic results and

strategies related to these adaptive online learning algorithms.

2.2 Adaptivity in Online Learning

Motivated by the discussion in the previous section, a natural question is whether it’s possible

to achieve regret of the form RT (u) ≤ O(∥w1 − u∥√∑Tt≙1 ∥gt∥2), without prescient knowledge of

g1, . . . , gT or the comparator u ∈W . In other words, is it possible to adapt to the unknown quantities∥w1 − u∥ and
√
∑Tt≙1 ∥gt∥2 on-the-ŕy, without tuning hyperparameters. It turns out there are several

different frontiers of adaptivity, characterized by different kinds of prior knowledge that the learner

might have access to: typically that the subgradients are uniformly bounded by some GT ≥maxt ∥gt∥,
that the losses map to a bounded range ℓt ∶ W → [a, b∥, that the learner has prior knowledge of a

D ≥ ∥u −w1∥ (usually by assuming that the domain is bounded with D ≥ supx,y∈W ∥x − y∥), or some

combination of these conditions.

In the simplest case, when one has access to both a bound D ≥ ∥u −w1∥ and a bound on the

subgradients GT ≥ ∥gt∥ for all t, it is well-known that adaptivity to
√
∑Tt≙1 ∥gt∥2 can be achieved up to

constant factors by simply using the best approximation to the optimal η∗ ≙ ∥u −w1∥ /√∑Tt≙1 ∥gt∥2
1Note that constrained does not imply bounded, so this point is relevant even in the constrained setting. To see

why, consider an algorithm with domain W ≙ {(x, y) ∈ R2
∶ y ≥ x2}, i.e., the domain is the epigraph of a parabola.

This is a convex, constrained domain in which supx,y∈W ∥x − y∥ ≙∞.

10

that one has access to on each round: ηt ≙ D/√G2
T +∑t−1s≙1 ∥gs∥2.2 This is the essence of the

AdaGrad algorithm (McMahan and M. J. Streeter 2010; J. Duchi, Hazan, and Singer 2011). When

D is available but not the Lipschitz bound GT , it is still possible to match this guarantee up to

constant factors (for instance, by instead setting ηt ≙ D/√∑t−1s≙1 ∥gt∥2), in which case the algorithm

is said to be Lipschitz adaptive or scale-free (Orabona and Pál 2018; Mayo, Hadiji, and Erven

2022; Cutkosky 2019a).3 When the losses are L-smooth, these bounds can be improved to RT (u) ≤
O(LD2

+ D
√
L∑Tt≙1 ℓt(u)) Ð referred to as an L∗ bound or small loss bound Ð though the

works which achieve these guarantees still require one or more of the following assumptions: prior

knowledge of GT , that ℓt has bounded range (known in advance), prior knowledge of a lower bound

ℓ∗t ≤ ℓt(w) for all w ∈W , additional structural assumptions such as strong convexity or exp-concavity,

or by assuming the losses take some speciőc form such as the square loss (Nicolo Cesa-Bianchi, Long,

and Manfred K Warmuth 1996; Jyrki Kivinen and Manfred K Warmuth 1997; Srebro, Sridharan,

and Tewari 2010; Orabona, Nicolo Cesa-Bianchi, and Gentile 2012).

If a bound GT ≥ maxt ∥gt∥ is known but not the bound D ≥ ∥u −w1∥, the situation gets sig-

niőcantly trickier. The essential difficulty is that without prior knowledge of how far we started

from the comparator, the learner’s iterates wt could at any point be arbitrarily far away from the

benchmark u, leading to high regret. As such, the learner must take great care to control ∥wt∥ in

such a way that it is adaptive to this unknown unknown initial distance comparator norm ∥u −w1∥.
Without prior-knowledge of this gap, AdaGrad and its variants can never guarantee the optimal

dependence on ∥u −w1∥, even with some clever hyperparameter tuning. In fact, no algorithm can

guarantee regret RT (u) ≤ ∥u −w1∥√∑Tt≙1 ∥gt∥2 without prior knowledge of u: it turns out that in

the setting of GT -Lipschitz losses and unbounded W , the worst-case regret of any algorithm is at

least

RT (u) ≥ Ω(∥u −w1∥GT

√
T log (∥u −w1∥√T + 1)) (2.3)

in the worst-case (Mcmahan and M. Streeter 2012, Theorem 7; Orabona 2013, Theorem 2). Hence,

there is an additional cost of at least Ω(√log (∥w1 − u∥√T + 1)) associated with adaptivity to

∥u −w1∥. For instance, a standard result in this setting is

RT (u) ≤ O⎛⎜⎝∥u −w1∥
¿ÁÁÀ T

∑
t≙1

∥gt∥2 log (∥u −w1∥√T + 1) +GT ∥u −w1∥ log (∥u −w1∥√T + 1)⎞⎟⎠ (2.4)

2Bounds which scale with the adaptive
√
∑
T
t≙1 ∥gt∥2 instead of the pessimistic G

√
T are occasionally referred to

as “second-order adaptivež, owing to the squared dependence on the gradient norms.
3Note that scale-free is actually a stronger notion than just Lipschitz adaptivity, in that the regret of a scale-free

algorithm depends only on maxt ∥gt∥, rather than the potentially pessimistic upper-bound GT . However, for our
purposes drawing this distinction is not necessary since all of the Lipschitz adaptive algorithms we discuss in this
thesis will also be scale-free.

11

which exhibits the adaptivity to both ∥u −w1∥ and
√
∑Tt≙1 ∥gt∥2, and matches Equation (2.3) up to

logarithmic terms (Mcmahan and M. Streeter 2012; McMahan and Orabona 2014; Orabona 2013;

Orabona and Pál 2016; Cutkosky and Orabona 2018; Hoeven 2019). Algorithms which guarantee

regret matching the lower bound up to logarithmic terms are called “comparator-adaptivež, or

“parameter-freež,4 owing to the fact that they optimally adapt to both unknown quantities ∥u −w1∥
and
√
∑Tt≙1 ∥gt∥2 simultaneously on-the-ŕy, and hence require no offline hyperparameter tuning to

achieve near-optimal regret. Some works also consider the weaker bounds of the form RT (u) ≤
O (∥u −w1∥GT

√
T log (∥u −w1∥√T + 1)) to be parameter-free, allowing the

√
∑Tt≙1 ∥gt∥2 term to

degrade to the worst-case GT

√
T . In either case, note that the key property that distinguishes the

parameter-free bound is that the regret against w1 is constant:

RT (w1) ≤ Õ⎛⎜⎝∥w1 −w1∥
¿ÁÁÀ T

∑
t≙1

∥gt∥2⎞⎟⎠ ≙ O(1).

The őrst results to avoid both the bounded domain and bounded gradient assumptions have only

been achieved in recent years. Cutkosky (2019a) develops an algorithm which achieves

RT (u) ≤ Õ⎛⎜⎝∥u −w1∥
¿ÁÁÀ T

∑
t≙1

∥gt∥2 log (∥u −w1∥√T + 1) +GT ∥u −w1∥3⎞⎟⎠ ,
and Mhammedi and Koolen (2020) shows that the additional cubic penalty is unavoidable while

maintaining a Õ (∥u −w1∥GT

√
T) dependence. Alternatively, Orabona and Pál (2018) show that

RT (u) ≤ O(∥u −w1∥2√∑Tt≙1 ∥gt∥2) can be attained without prior knowledge of GT in an unbounded

domain, avoiding the cubic penalty in exchange for a horizon-dependent quadratic penalty. Works

such as Mayo, Hadiji, and Erven (2022) and Kempka, Kotlowski, and Manfred K. Warmuth (2019)

show that the cubic penalty can be avoided in certain special cases such as regression-type losses.

Note that adaptivity to ∥u −w1∥ is closely related to the problem of unconstrained online learn-

ing in general. The reason being that in the unconstrained setting, there is never a constant D

such that D ≥ supx,y∈W ∥x − y∥, so bounds which scale with ∥u −w1∥ are the only real option. As

such, throughout this thesis we will primarily focus on the unconstrained setting with W ≙ Rd for

simplicity, though the results presented here can be easily generalized to constrained settings by

accepting some notational and proof bloat (see Remark A.1.2).

Remark 2.2.1. For brevity, we will frequently adopt the common convention that w1 ≙ 0 (particularly

in Parts II and III of the thesis), in which case parameter-free regret is characterized by the property

RT (0) ≤ O(1) and features bounds scaling with ∥u∥ instead of ∥u −w1∥. This assumption is without

4Note that throughout the machine learning literature, the decision variable wt ∈ W is often referred to as a
“parameter vectorž, while in our context “parameter-freež refers to hyperparameters.

12

loss of generality since one could otherwise perform a translation of the coordinate system.

2.2.1 Principles for Adaptive Algorithm Design

In the previous section we saw there were two main types of adaptivity in the general online con-

vex optimization setting: adaptivity to
√
∑Tt≙1 ∥gt∥2 and adaptivity to ∥u −w1∥. The former is

fairly straight-forward to understand: we observe gt after each round, so we can reasonably “ap-

proximatež the optimal step-size by running (sub)gradient descent with an adaptive step-size ηt ∝

1/√∑t−1s≙1 ∥gs∥2. The adaptivity to ∥u −w1∥ is much less obvious at a glance; we know that the bound

we’re shooting for must have an additional multiplicative penalty of O (√log (∥u −w1∥√T + 1)) in

it, but where does it come from? How do we design a strategy that achieves such a bound? In this

section we provide some of the key insights and approaches to designing algorithms which attain

bounds of the form Equation (2.4). Throughout our exposition here we will assume for simplicity

that we are in the unconstrained setting with W ≙ R
d. The goal here is to provide some of the

broad-strokes of the main approaches so that the reader has a high-level perspective on how to go

about designing these algorithms. Seeing the approaches here will also later help illustrate the need

for a new approach, which will be introduced in Chapter 4.

One of the foundational observations leading to comparator-adaptive guarantees is a certain

reward-regret duality, which tells us that designing an algorithm which guarantees RT (u) ≤ BT (u) for

some function BT ∶W → R is equivalent to designing an algorithm which guarantees −∑Tt≙1 ⟨gt,wt⟩ ≥
B∗T (−∑Tt≙1 gt), where B∗T is the Fenchel conjugate of BT , deőned as

B∗T (θ) ≙ sup
w
⟨θ,w⟩ −BT (w).

In particular, to achieve the optimal parameter-free bound, we would want to consider BT (u) ≙
O (∥u −w1∥√∑Tt≙1 ∥gt∥2 log (∥u −w1∥√T + 1)) and its corresponding Fenchel conjugate B∗T . The

following theorem is a standard starting point for many works which develop parameter-free bounds

(McMahan and Orabona 2014; Orabona and Pál 2016; Cutkosky and Orabona 2018; Cutkosky and

Sarlos 2019; Mhammedi and Koolen 2020; Hoeven 2019; Jun and Orabona 2019). We provide a

basic proof for convenience to the reader.

Theorem 2.2.2. Let BT ∶W → R be a convex function. An algorithm guarantees

RT (u) ≤ BT (u), ∀u ∈W

if and only if it guarantees

−

T

∑
t≙1

⟨gt,wt⟩ ≥ B∗T (− T

∑
t≙1

gt) , ∀g1, . . . , gT . (2.5)

13

Proof. Suppose that for any u ∈ W , A guarantees RT (u) ≙ ∑Tt≙1 ⟨gt,wt − u⟩ ≤ BT (u). Then re-

arranging, we equivalently have

⟨− T

∑
t≙1

gt, u⟩ −BT (u) ≤ − T

∑
t≙1

⟨gt,wt⟩ ,
and since this holds for any u ∈W , it must hold for the one which tightens the bound:

sup
u
⟨− T

∑
t≙1

gt, u⟩ −BT (u) ≤ − T

∑
t≙1

⟨gt,wt⟩ , i.e., B∗T (T∑
t≙1

gt) ≤ − T

∑
t≙1

⟨gt,wt⟩ .
For the other direction, suppose that −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (−∑Tt≙1 gt). Then we immediately have

that

RT (u) ≙ T

∑
t≙1

⟨gt,wt⟩ − T

∑
t≙1

⟨gt, u⟩ ≤ −B∗T (− T

∑
t≙1

gt) + ⟨− T

∑
t≙1

gt, u⟩ ≤ sup
θ

⟨θ, u⟩ −B∗T (θ) ≙ BT (u).

The value of this theorem is that it has shown us an equivalent condition to RT (u) ≤ BT (u)
which does not depend on the unobserved quantity u. That is, by considering instead the equivalent

condition −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (−∑Tt≙1 gt) we remove the comparator completely from our objective.

Moreover, the new condition depends only on the gradients, which we do eventually observe, making

Equation (2.5) appealing from an algorithm design perspective. Let us consider a few common

approaches for designing an algorithm which guarantees Equation (2.5).

Potential-based Arguments. The idea with this approach is as follows. We want to design

an algorithm which guarantees −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (−∑Tt≙1 gt). To this end, let B∗1 , . . . ,B
∗

T−1 be an

arbitrary sequence of functions (which the designer will eventually choose) and deőne the “potentialž

at time t to be Φt ≙ ∑ts≙1 ⟨gs,ws⟩ +B∗t (−∑ts≙1 gs) and Φ0 ≙ 0. Then, if we could ensure that this

potential is non-increasing (via our choices of wt and B∗t), we would have

ΦT ≙
T

∑
t≙1

⟨gt,wt⟩ +B∗T (− T

∑
t≙1

gt) ≤ ΦT−1 ≤ . . . ≤ Φ0 ≙ 0

hence,

B∗T (− T

∑
t≙1

gt) ≤ − T

∑
t≙1

⟨gt,wt⟩ ,
and so via Theorem 2.2.2 we will have RT (u) ≤ BT (u). To ensure non-increasing potential, we need

14

only select wt and B∗t in such a way that

Φt −Φt−1 ≙ ⟨gt,wt⟩ +B∗t (−g1∶t) −B∗t−1 (−g1∶t−1) ≤ 0
on each round. Unfortunately, this is often easier said than done, but there is nonetheless a clear

sequence of steps that the algorithm designer can take: deőne the potential Φt and ensure the

sequence is decreasing by choosing wt and B∗t appropriately. See Abernethy et al. 2014; Hoeven

2019; Cutkosky and Sarlos 2019; Kempka, Kotlowski, and Manfred K. Warmuth 2019; Mhammedi

and Koolen 2020; Orabona and Pál 2021 for examples using a potential-based approach to designing

adaptive algorithms.

The main issue with the potential-based approach is that it is in some sense too general, in

that it does not restrict the designer enough. Because of this, the potential-based approach often

often requires a good deal of cleverness on the part of the designer to choose the B∗t and and wt

appropriately. The ideal framework from an algorithm design perspective should instead naturally

guide the designer towards the right choices by introducing natural restrictions/limitations, pruning

the space of possible design choices without signiőcantly limiting the power of the framework.

The following approaches can all be loosely considered to be particular restrictions of the general

potential-based approach.

Coin-Betting. Coin-betting is arguably the most well-known framework for designing parameter-

free algorithms, and can be seen as a particular form of the potential-based approach which intro-

duces the restriction that the designer need only choose a “betting fractionž on each round, and

prescribes a choice of wt based on this betting fraction (Orabona and Pál 2016; Cutkosky and

Orabona 2018; Jun, Orabona, et al. 2017; Orabona 2019). The idea is that if we deőne Wealtht ≙

−∑ts≙1 ⟨gs,ws⟩, then on any time t if we set wt ≙Wealtht−1βt for some βt ∈ {β ∈ Rd ∶ ∥β∥ < 1}, we’d

have

Wealtht ≙Wealtht−1 − ⟨gt,wt⟩ ≙Wealtht−1 −Wealtht−1 ⟨gt, βt⟩ ≙Wealtht−1 (1 − ⟨gt, βt⟩) .
So suppose that the desired wealth bound holds at time t − 1: Wealtht−1 ≥ B

∗

t−1 (−g1∶t−1). Then

Wealtht ≙Wealtht−1 (1 − ⟨gt, βt⟩) ≥ B∗t−1 (−g1∶t−1) (1 − ⟨gt, βt⟩) ,
so if we can set βt in such a way that B∗t−1 (−g1∶t−1) (1 − ⟨gt, βt⟩) ≥ B∗t (−g1∶t), we’d have

Wealtht ≙ −
t

∑
s≙1

⟨gs,ws⟩ ≥ B∗t (−g1∶t) .
Formalizing this more rigorously as an induction argument, one can use this approach to ensure that

Wealtht ≥ B
∗
t (−g1∶t) for any t, so that WealthT ≙ −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (−g1∶T) and hence RT (u) ≤

15

BT (u) via Theorem 2.2.2. Orabona and Pál 2016 provides a set fairly general conditions on B∗t

that are sufficient to ensure that the induction step goes through.

Follow the Regularized Leader (FTRL). Instead of explicitly using the reward-regret

duality, throughout this thesis we will take an FTRL-based perspective. The key observation is

that it’s not actually necessary to go through any fancy reward-regret duality to get a comparator-

adaptive guarantee; we can use the same FTRL tools that are ubiquitious throughout online learning.

In particular, on each round FTRL chooses

wt ≙ argminw∈W ⟨t−1∑
τ≙1

gτ ,w⟩ + ψt(w) ≙∶ argminw∈W Ft(w),
where ψt ∶ W → R is a convex regularizer. Then, via the well-known regret guarantee for FTRL

(see, e.g., Orabona 2019, Theorem 7.1), we have

RT (u) ≤ ψT (u) + T

∑
t≙1

Ft(wt) − Ft+1(wt+1) + ⟨gt,wt⟩´¹¹¹¸¹¹¶
≙∶δt

.

and so, if we would like to guarantee RT (u) ≤ BT (u) up to constants, all we have to do is design

a sequence of regularizers ψ1, . . . , ψT such that ψT (u) ≈ BT (u) and that the latter terms sum to a

constant, ∑Tt≙1 δt ≤ O(1).
Mirror Descent. A closely-related approach to FTRL is mirror descent. The typical mirror

descent update is of the form

wt+1 ≙ argminw∈W ⟨gt,w⟩ +Dψt(w∣wt),
where ψt ∶ W → R is a convex regularizer and Dψt(x∣y) ≙ ψt(x) − ψt(y) − ⟨∇ψt(y), x − y⟩ is the

Bregman divergence w.r.t. ψt between x, y ∈ W . Setting ψt(w) ≙ 1
2η
∥w∥2 leads to the standard

(projected) subgradient descent update, so mirror descent can be seen as generalizing gradient

descent to different parameter-space geometries, represented by different choices of ψt.

The design principles of mirror descent are similar to those of FTRL: we still want to choose the

regularizers in such a way that ψT (u) ≈ BT (u), while also ensuring certain stability terms sum to

some small constant. However, as we will elaborate in Chapter 4, mirror descent on its own is not

suitable for designing parameter-free algorithms. The issue is that mirror descent is fundamentally

unstable in unbounded settings, and in particular it is possible to show that mirror descent with a

time-varying regularizer can incur linear regret (Orabona and Pál 2018). In Chapter 4 we present

a framework that employs a generalization of the mirror descent perspective to incorporate the

stability properties of FTRL. We will then use this approach to design every algorithm featured in

this thesis. First, we take a short detour to to introduce some natural notions of non-stationarity

16

for the online learning setting, which will motivate the development of a new approach which goes

beyond the limitations imposed by reward-regret duality and FTRL.

17

Chapter 3

Learning in Dynamic Environments

In the previous chapter we discussed a class of algorithms which adapt to both the unknown initial

distance ∥w1 − u∥ and the gradients
√
∑Tt≙1 ∥gt∥2 simultaneously to achieve an optimal adaptive

regret bound of RT (u) ≤ O(∥u −w1∥√∑Tt≙1 ∥gt∥2 log (∥u −w1∥√T + 1)). However, like any measure

of performance, regret is only meaningful insofar as it captures some notion of “goodnessž that we

actually care about. In many problems of practical interest, competing against any őxed comparator

u ∈W can fail to be meaningful, particularly when modelling problems with a time-varying or non-

stationary solution.

As a simple illustrative example, consider a simple 1-dimensional prediction problem in which

the objective is to predict a response variable yt ∈ R before it is observed. A simple way to model

this problem is as an online learning problem with losses that capture prediction error, such as

ℓt(w) ≙ 1
2
(yt −w)2. On one hand, if

yt ≙ µ + εt,

for some µ ∈ R, and mean-zero noise εt, then clearly the őxed comparator u ≙ µ would provide a

meaningful performance baseline. On the other hand, suppose instead that the mean of yt is drifting

over time, according to an unknown dynamical system:

µt ≙ Ft(µt−1)
yt ≙ µt + εt,

where Ft is an unknown transfer function and µ0 is arbitrary. In this case, even under relatively

simple time-varying dynamics such as Ft(µ) ≙ µ + δt for zero-mean noise δt, no őxed comparator

u will provide reasonable predictions of yt across time; instead, our baseline ought to somehow

“trackž yt as its distribution changes over time. More generally, to meaningfully model learning in

18

a dynamically changing environment, we need to consider stronger notions of regret which better

capture the dynamic nature of the problem. In this chapter, we review the two main notions of

non-stationarity studied in online learning, dynamic regret and strongly-adaptive regret.

3.1 Dynamic Regret

The most straight-forward way to strengthen the notion of regret is to instead measure performance

relative to a sequence of comparators u ≙ (u1, . . . , uT), leading to dynamic regret:

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut). (3.1)

Dynamic regret is more appropriate for true streaming settings in which data might drift over

time, wherein a őxed benchmark u may be an excessively weak baseline. However, it is also more

demanding than the previous deőnition (called static regret, when the distinction matters). Indeed,

without further assumptions on the losses it can be shown that there exist sequences of losses and

comparator for which the dynamic regret is vacuous in the worst-case, RT (u) ≥ Ω(T) (T. Yang et al.

2016). Intuitively, the issue is that the comparators u can be chosen to “overőtž to the sequence

of losses so that the benchmark performance ∑Tt≙1 ℓt(ut) is too difficult to compete against. Thus,

ideally we ought to somehow distinguish such sequences from the ones which are actually useful for

us to reason about.

Recall that in the static regret case, the optimal regret scaled with ∥u −w1∥. In some sense, we

can think of this quantity as a measure of “complexityž of the benchmark point u ∈ W : difficult-

to-compete-with benchmarks are those that are very different from our initial preconceptions, rep-

resented by a large ∥u −w1∥, while easier benchmarks are those which are close to w1. Likewise,

one might expect that dynamic regret should also account for some notion of of “complexityž of the

comparator sequence, so as to account for the “difficultyž of the sequence we’re up against. One

natural measure of this complexity is the path-length:

P (u) ≙ T

∑
t≙2

∥ut − ut−1∥ . (3.2)

When the comparator sequence is clear from context, we will use the short-hand PT ≙ P (u).
In the setting of G-Lipschitz losses and a bounded domain of radius D ≙ maxx,y∈W ∥x − y∥, T.

Yang et al. 2016 show that in the speciőc case where the comparator sequence is the sequence of

local minimizers, u∗ ≙ (u∗1 , . . . , u∗T) with u∗t ≙ argminw∈W ℓt(w), a simple greedy strategy that plays

wt ≙ argminw∈W ℓt−1(w) guarantees RT (u∗) ≤ O (GP (u∗)), and prove a matching lowerbound.

However, as alluded to above, we may not always care about this speciőc comparator sequence: in

19

many instances the sequence u
∗ can “overőtž to the losses, resulting in small cumulative loss but

a long path-length, making the RT (u∗) ≤ O(P (u∗)) bound vacuous. For instance, let W ≙ [−1,1∥
and ℓt(w) ≙ 1

2
(w−εt)2 for εt ≙ (−1)t, then the path-length is clearly P (u∗) ≙ ∑Tt≙2 ∣ut − ut−1∣ ≙ Ω(T)

and so the greedy strategy incurs linear regret. On the other hand, were we instead to compare

against the optimal őxed comparator ut ≙
1
T ∑Ts≙1 εs ≙∶ ū for all t, then dynamic regret reduces to

static regret and on the very same problem projected gradient descent with step-size η ≙ 1

G
√
T

will

guarantee sublinear regret RT (ū) ≤ O(G√T).
What the above discussion suggests is that making meaningful dynamic regret guarantees in-

volves competing against a sequence u which somehow favorably strikes a trade-off between the

path-length PT and the cumulative loss ∑Tt≙1 ℓt(ut). Yet this trade-off inevitably depends on the

speciőc sequence of losses ℓt, which are unknown to the learner a priori. An ideal strategy should

thus instead make guarantees w.r.t. arbitrary sequences u, not just for speciőc sequences such as

u
∗ or ū.

Interestingly, the question of how to compete with an arbitrary sequence u was introduced all

the way back in the seminal work of Zinkevich (2003), considered by many to be one of the őrst

works to popularize the online learning framework. Zinkevich shows that in a bounded domain with

G-Lipschitz losses, projected gradient descent with step-size η guarantees

RT (u) ≤ O (D2
+DPT

2η
+
η

2

T

∑
t≙1

∥gt∥2) (3.3)

Hence, if PT and∑Tt≙1 ∥gt∥2 were known a priori, the learner could set the step-size to η∗ ≙
√

D2+DPT

∑
T
t≙1∥gt∥2

to get

RT (u) ≤
¿ÁÁÀ(D2 +DPT) T∑

t≙1

∥gt∥2, (3.4)

which was later shown to be optimal via a matching lowerbound of RT (u) ≥ Ω (G√(D2 +DPT)T)
due to L. Zhang, S. Lu, and Z.-H. Zhou (2018).

Clearly one can not actually choose the step-size η∗ that yields this bound in practice, but it

turns out that one can match the optimal regret up to logarithmic terms using a simple mixture-

of-experts approach. The idea is rather simple: we can run several instances of projected gradient

descent in parallel, each using a different step-size ηi, and use an experts algorithm to combine

their predictions. By using a carefully selected grid of O(log (T)) different step-sizes ηi and suitable

experts algorithm, one can guarantee regret matching the optimal bound Equation (3.4) up to an

additional factor of O (GD√T log (log (T))). This is the essence of the ADER algorithm of L.

Zhang, S. Lu, and Z.-H. Zhou (2018).

20

3.2 Strongly-adaptive Regret

At the beginning of this chapter we motivated the need for a stronger notion of regret by reasoning

that in certain dynamic/non-stationary environments, a őxed comparator can be a weak baseline

when it fails to “trackž some time-varying statistic of the losses. Dynamic regret addresses this

issue by comparing the learner’s performance against that of an arbitrary solution trajectory u ≙(u1, . . . , uT).
Another way to think of the issue is as a matter of insufficient resolution. That is, while a őxed

comparator may be a weak baseline over the entire interval, it can still be a good baseline over

smaller subsets of the loss sequence. Intuitively, by “zooming inž to smaller subsets of the sequence

one could in theory partition [1, T ∥ into subintervals over which the local statistics of the losses are

approximately őxed, so that a őxed comparator captures a temporally-local optimum. Then a strong

baseline would be to insist that the learner achieves low static regret on each of these subintervals.

The difficulty with this is that what constitutes a “reasonablež partition of [1, T ∥ will depend on the

particular statistics of the particular loss sequence. To avoid making assumptions about the lengths

and locations of these subintervals we can instead insist that the learner achieve low regret on every

sub-interval simultaneously. In particular, an algorithm is called strongly-adaptive if it achieves

static regret which is minimax optimal up to logarithmic terms on every sub-interval [a, b∥ ⊆ [1, T ∥
(Daniely, Gonen, and Shalev-Shwartz 2015).

These sorts of all-intervals guarantees were originally studied in the context of portfolio selection,

under the assumption of exp-concave losses (Hazan and Comandur Seshadhri 2007; Hazan and

C. Seshadhri 2009). Somewhat recently there has been a renewed interest in strongly adaptive

guarantees, with Daniely, Gonen, and Shalev-Shwartz 2015 being the őrst to obtain a strongly-

adaptive guarantee for general convex functions. In particular, for G-Lipschitz convex functions

and domain W of radius D, they derive an algorithm which guarantees

R[a,b∥(u) ≤ O (DG√b − a log (b + 1)) , ∀[a, b∥ ⊆ [1, T ∥,
and the log (b + 1) was later improved to

√
log (b + 1) by Jun, Orabona, et al. (2017) by leveraging

parameter-free algorithms. Cutkosky 2020 further reőnes the strongly-adaptive guarantee to yield

near-optimal dynamic regret over each interval:

R[a,b∥(u) ≤ Õ⎛⎝
√(D2 +DP[a,b∥) ∑

t∈[a,b∥
∥gt∥2⎞⎠ , ∀[a, b∥ ⊆ [1, T ∥

where P[a,b∥ ≙ ∑bt≙a+1 ∥ut − ut−1∥. This is clearly the strongest type of guarantee, since it captures

the optimal dynamic regret as the special case [a, b∥ ≙ [1, T ∥ as well as as the strongly-adaptive

guarantee R[a,b∥(u) ≤ Õ (GD√b − a) by setting the comparator ua ≙ . . . ≙ ub ≙ u.

21

A natural question is whether a parameter-free analogue of these bounds might be attainable,

avoiding the factors of D by instead adapting to the comparator norm. Unfortunately, parameter-

free guarantees appear to be incompatible with these all-intervals style guarantees. To see why,

notice that for all intervals [a, b∥ of some őxed length τ ≙ b − a, we would require R[a,b∥(0) ≙
∑bt≙a ⟨gt,wt⟩ ≤ O(1), from which it can be shown that ∥wt∥ ≤ O(2τ) (see, e.g., J. Zhang and

Cutkosky 2022, Lemma 8). Yet clearly for large enough T we can not simultaneously guarantee

R[1,T ∥(u) ≤ O(∥u∥G√T log (∥u∥√T)) for all u ∈ Rd, since via reward-regret duality this entails

competing against a comparator u ∈ Rd with ∥u∥ ≙ O(exp (T) /√T) in the worst-case1 which can be

made arbitrarily large relative to the őxed O(2τ). Hence, even in the best possible scenario where

wt precisely aligns with u on all rounds, the regret on the interval [1, T ∥ could still be very large

simply due to the difference in magnitude between wt and u.

Interestingly, in Chapter 10 we will see that in the speciőc setting of online linear regression,

it is actually possible to achieve the stronger all-intervals dynamic regret guarantees even in un-

bounded domains with unbounded losses, without tuning any hyperparameters. Note that this

does not contradict the reasoning above because the algorithms in that setting instead guarantee

RT (0) ≙ O(log (T)), rather than RT (0) ≙ O(1), so even though these algorithms make very strong

guarantees, they are not considered “parameter-freež in the sense discussed in Section 2.2.

1i.e., the comparator which tightens the regret inequality satisőes ∑
T
t≙1 ⟨gt,wt⟩ ≤ ∑Tt≙1 ⟨gt, u⟩ + ψT (u) ≙

minu∗∈W ∑
T
t≙1 ⟨gt, u∗⟩ + ψT (u∗). For the usual comparator-adaptive guarantees this comparator can be as large as

∥u∗∥ ≙ ∥∇ψ∗T (−g1∶T)∥ ≙ O(exp (T) /
√
T).

22

Chapter 4

Centered Mirror Descent

In order to design algorithms which make strong guarantees under minimal assumptions, we will

require a great deal of ŕexibility in terms of algorithm design. In this chapter we introduce our

framework and key technical tools which will be used to design every algorithm in the thesis, which

we refer to as Centered Mirror Descent.

Before getting into the details of our approach, let us motivate why the existing approaches

are not sufficient for our purposes. Recall from Section 2.2.1 that one of the key design principles

behind comparator-adaptive algorithms is the reward-regret duality, which states that guaranteeing

RT (u) ≤ BT (u) is equivalent to guaranteeing −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (−∑Tt≙1 gt). In fact, it will be

instructive to recall the reasoning connecting the regret upper bound to the wealth lower bound:

suppose that we wish to guarantee static regret of RT (u) ≙ ∑Tt≙1 ⟨gt,wt − u⟩ ≤ BT (u) for all u ∈ Rd.

Since this must hold for any u ∈ Rd, it must hold for the u which tightens the inequality:

sup
u
RT (u) −BT (u) ≙ T

∑
t≙1

⟨gt,wt⟩ + sup
u
⟨− T

∑
t≙1

gt, u⟩ −BT (u) ≙ T

∑
t≙1

⟨gt,wt⟩ +B∗T (− T

∑
t≙1

gt).
so re-arranging we have −∑Tt≙1 ⟨gt,wt⟩ ≥ B∗T (∑Tt≙1 gt). Crucially, this latter condition does not

depend on the unknown comparator, making it more amenable to algorithm design. However,

notice that the assumption of a őxed comparator u ∈ Rd was crucial for the above argument to

work. It is unclear in general what the analogue of this argument should be for dynamic regret,

where we instead have a sequence of comparators. Similarly, the FTRL-based approach to regret

minimization is strongly tied to competing with a őxed comparator, and devising dynamic regret

guarantees for FTRL is non-trivial in general. Indeed, we show in Section 4.1 of Jacobsen and

Cutkosky (2022) that vanilla FTRL algorithms are not capable of guaranteeing sublinear dynamic

regret in general.

On the other hand, it is well-known that there exists a natural connection between mirror descent

23

Algorithm 2: (Generalized) Centered Mirror Descent

1 Input: ψ1 ∶W → R,M1 ∶W →W

2 Initialize: w1 ≙ argminw∈W ψ1(w), w̃1 ≙M1(w1)
3 for t ≙ 1 ∶ T do
4 Play w̃t ∈W , observe loss function ℓt ∶W → R

5 Choose regularizer ψt+1 and composite penalty φt
6 Deőne ∆t(w) ≙Dψt+1(w∣w1) −Dψt(w∣w1)
7 Update wt+1 ≙ argminw∈W ℓt(w) +Dψt(w∣w̃t) + (∆t +φt)(w)
8 Choose mapping Mt+1 ∶W →W

9 Update w̃t+1 ≙Mt+1(wt+1)
10 end

algorithms and dynamic regret. For instance, in a bounded domain with supx,y∈W ∥x − y∥ ≤ D,

subgradient descent1 with a őxed step-size η guarantees dynamic regret (see, e.g., L. Zhang, S. Lu,

and Z.-H. Zhou (2018))

RT (u) ≙ T

∑
t≙1

⟨gt,wt − ut⟩ ≤ D2
+DPT

2η
+
η

2

T

∑
t≙1

∥gt∥2 ,
where we recall from Chapter 3 that PT ≙ ∑Tt≙2 ∥ut − ut−1∥ is the path-length of the comparator

sequence. Observe that this differs from the usual static regret bound from Section 2.1 by only one

term, D
η
PT , which naturally introduces the path-length of the comparator sequence into the bound.

Moreover, optimally tuning η∗ ≙
√

D2+DPT

∑
T
t≙1∥gt∥2 yields the optimal dynamic regret bound:

RT (u) ≤
¿ÁÁÀ(D2 +DPT) T∑

t≙1

∥gt∥2.
This suggests that a mirror descent-based approach might be naturally well-suited to designing

algorithms for dynamic regret. At the same time, we noted in Section 2.2.1 that the vanilla mirror

descent algorithm can be fundamentally unstable in unbounded domains. The key to our approach is

to remedy this stability issue by incorporating an additional penalty into the mirror descent update,

which helps the algorithm behave more similarly to an FTRL algorithm while still maintaining the

natural connection to dynamic regret inherent to mirror descent algorithms.

The algorithm is shown in Algorithm 2. Here we present a modest generalization of the original

framework due to Jacobsen and Cutkosky (2023) which incorporates a post-hoc adjustment into

the update (shown in blue in lines 8-9). For ease of exposition, we őrst discuss the core algorithm

1Recall that subgradient descent is a special case of mirror descent, obtained by setting ψ(w) ≙ 1

2η
∥w∥2

24

which skips the adjustment step (i.e. settingMt(w) ≙ w for all t), and will discuss the implications

of the post-hoc adjustment separately in Section 4.1.

The base algorithm is a particular instance of composite mirror descent (John C Duchi et al.

2010), which is a mirror descent update that adds an auxiliary penalty ϕt(w) to the loss func-

tion ℓt(w). Typically, ϕt(w) is a composite loss function which enforces some additional desirable

properties of the solution, such as sparsity. In contrast, we will use these terms ϕt(w) as a crucial

stabilizing quantity in our algorithms. This composite term is composed of two parts, ∆t(w) and

φt(w), with the distinguishing feature of our approach being the ∆t(w) ≙Dψt+1(w∣w1)−Dψt(w∣w1).
To see what this term ∆t(w) contributes, assume ℓt(w) ≙ ⟨gt,w⟩ for some gt ∈ R

d and suppose

we set ψt and w1 such that minw ψt(w) ≙ ψt(w1) ≙ 0 for all t, φt(w) ≡ 0, and Mt(w) ≙ w. From

the őrst-order optimality condition wt+1 ≙ argminw∈Rd ⟨gt,wt⟩ +Dψt(w∣wt) +∆t(w), we őnd that

∇ψt+1(wt+1) ≙ ∇ψt(wt)−gt, so unrolling the recursion and solving for wt+1 yields wt+1 ≙ ∇ψ
∗

t+1(−g1∶t),
where ψ∗t+1 is the Fenchel conjugate of ψt+1. This latter expression is equivalent to the Follow-the-

Regularized-Leader (FTRL) update wt+1 ≙ argminw∈Rd ⟨g1∶t,w⟩ + ψt+1(w) (McMahan 2017). More-

over, in the constrained setting, letting ψt+1,W (w) denote the restriction of ψt+1 to constraint set W ,

Algorithm 2 captures both the “greedy projectionž update wt+1 ≙ ∇ψ
∗

t+1,W (∇ψt(wt) − gt) and the

“lazy projectionž update wt+1 ≙ ∇ψ
∗

t+1,W (−g1∶t) by adding the indicator function IW (w) to the φt

terms or to the ψt terms respectively. Hence, including ∆t(w) in Algorithm 2 is a way to incorporate

some properties of FTRL into a mirror descent framework.

In the unconstrained setting, the function ∆t(w) is in fact a critical stabilizing quantity in the

update. Indeed, Orabona and Pál (2018) showed that adaptive mirror descent algorithms can incur

linear regret in settings where the divergence Dψt(⋅∣⋅) may be unbounded. The issue is that vanilla

mirror descent does not properly account for changes in the regularizer ψt, allowing the iterates

wt to travel away from their initial position w1 too quickly. Algorithm 2 őxes this by adding a

corrective penalty ∆t(w) related to how much ψt has changed between rounds. Since this penalty

acts to bias the iterates back towards some central reference point w1, we refer to Algorithm 2 as

Centered Mirror Descent.

Our approach is similar to dual-stabilized mirror descent (DS-MD), proposed by Fang et al.

(2020), which employs the update wt+1 ≙ argminw∈Rd γt(⟨ηtgt,w⟩ +Dψ(w∣wt)) + (1 − γt)Dψ(w∣w1)
for scalars γt ∈ (0,1). This prevents the iterates wt from moving too far from w1 by decaying the

dual representation of wt towards that of w1. The DS-MD approach considers only ψt of the form

ψt ≙
ψ
ηt

for a őxed ψ, whereas Centered Mirror Descent applies more generally to ψt. This property

is crucial for our purposes, as the ψts we employ cannot be captured by a linear scaling of a őxed

underlying ψ. One could view our approach as a generalization of Fang et al. (2020) that easily

captures a variety of applications, such as dynamic regret, composite losses, and implicit updates.

The following lemma provides a generic regret decomposition that we’ll use throughout this work.

25

Lemma 4.0.1. (Centered Mirror Descent Lemma) Let ψt(⋅) be an arbitrary sequence of dif-

ferentiable non-negative convex functions, and assume that w1 ∈ argminw∈Rd ψt(w) for all t. Let

φt(⋅) be an arbitrary sequence of sub-differentiable non-negative convex functions. Then for any

u1, . . . , uT , Algorithm 2 guarantees

RT (u) ≤ ψT+1(uT) + T

∑
t≙1

φt(ut) + T

∑
t≙2

⟨∇ψt(wt) −∇ψt(w1), ut−1 − ut⟩´¹¹¸¹¹¶
≙∶Pt

+

T

∑
t≙1

⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¹¶
≙∶δt

, (4.1)

where gt ∈ ∂ℓt(wt).
Proof of this Lemma can be found in Appendix A.2.1. The proof follows as a special case of

a regret equality which we derive in Appendix A.1. To build intuition for how to use the Lemma,

consider the static regret of Algorithm 2 with φt(w) ≡ 0 and Mt(w) ≙ w for all t. In this case,

Equation (4.1) becomes RT (u) ≤ ψT+1(u) +∑Tt≙1 δt. Now, to guarantee a parameter-free bound of

the form RT (u) ≤ Õ(∥u∥√T) for all u, a natural approach is to set ψT+1(u) ≙ Õ(∥u∥√T), and

then focus our efforts on controlling the stability terms ∑Tt≙1 δt. To this end, the following Lemma

(proven in Appendix A.2.2) provides a set of simple conditions for bounding an expression closely

related to δt:

Lemma 4.0.2. (Stability Lemma) Let ψt(w) ≙ Ψt(∥w∥) where Ψt ∶ R≥0 → R≥0 is a convex function

satisfying Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x ≥ 0. Let c > 0, Gmax ≥ 0, Gmax ≥ Gt, and

assume that there exists an x̊t ≥ 0 and 1/Gmax-Lipschitz convex function ηt ∶ R≥0 → R≥0 satisfying

ηt(0) ≙ 0 such that ∣Ψ′′′t (x)∣ ≤ 2η′t(x)(c+1)2Ψ′′t (x)2 for all x ≥ x̊t. Then for any wt+1,wt ∈W ,

δ̂t
def
≙ cGt ∥wt −wt+1∥ −Dψt(wt+1∣wt) − ηt(∥wt+1∥)G2

t ≤
(c + 1)2G2

t

2Ψ′′t (x̊t)
We will generally apply this lemma in the context of G-Lipschitz losses, in which case we can set

Gmax ≙ G and Gt ≙ ∥gt∥. The more general conditions in terms of a Gt ≤ Gmax will become relevant

in Chapter 7 when we consider a generalization of the usual Lipschitz assumption which captures

quadratic losses.

To see the utility of Lemma 4.0.2, let ϕt(w) ≙ (∆t +φt)(w) and observe that the only difference

between the δt of Lemma 4.0.1 and the δ̂t of Lemma 4.0.2 is that in the former has a −ϕt(wt+1)
where the latter has a −ηt(∥wt+1∥) ∥gt∥2. Our approach throughout this work will be to design he

components of ϕt(w) to satisfy ϕt(w) ≥ ηt(∥w∥) ∥gt∥2 for all w ∈ Rd so that δt ≤ δ̂t, and then apply

the stability lemma to get ∑Tt≙1 δt ≤ ∑Tt≙1 δ̂t ≤ O (∑Tt≙1 ∥gt∥2
Ψ′′t (x0)). Then, we design Ψt(⋅) to ensure this

summation sums to a constant, leading to small regret.

26

In the sections to follow we will see several examples of ψt which meet the conditions of the

stability lemma, but for concreteness let us consider as a simple demonstration the őxed function

ψt(w) ≙ Ψ(∥w∥) ≙ 2 ∫ ∥w∥0
log(x/η+1)

η
dx where η ≤ 1

G
. Careful calculation shows that Ψ(⋅) satisőes

the conditions of Lemma 4.0.2 with ηt(x) ≙ ηx. Hence, δ̂t ≤
2∥gt∥2
Ψ′′t (0) ≙ 2η2 ∥gt∥2. Now, we wish to

achieve ϕt(wt+1) ≥ ηt(∥wt+1∥)∥gt∥2. This is easily accomplished by setting φt(w) ≙ 2η2∥gt∥2∥w∥.
Thus, setting η ≙ O(1/√T) yields ∑Tt≙1 δt ≤ ∑Tt≙1 δ̂t ≙ ∑Tt≙1 2η2∥gt∥2 ≤ O(1) so that overall we would

achieve a regret of Õ(∥u∥√T).
This example demonstrates the purpose of φt in the update. When ∆t(wt+1) ≥ ηt(∥wt+1∥)∥gt∥2,

we already obtain δt ≤ δ̂t. However, this identity may be false (as in the previous example) or difficult

to prove.2 In such cases, we include a small additional φt term to easily ensure the desired bounds.

In fact, this strategy can be viewed as generalizing a certain “correctionž term which appears in

the experts literature (e.g. Steinhardt and Liang 2014; L. Chen, Luo, and Wei 2021), but to our

knowledge is not typically employed in the general online linear optimization setting.

4.1 Incorporating Post-hoc Adjustments

Now that we have a feel for how to use the base algorithm, let us consider a modest generalization of

which on each round makes an additional post-hoc adjustment to the choices of the base algorithm

through the use of an arbitrary mapping Mt ∶W →W . Algorithms of this form have been studied

in prior works such as Gyorgy and Szepesvari (2016) and Hall and Willett (2016), wherein Mt is

interpreted as a dynamical model that the learner has access to. In this work, we will typically

use Mt as a convenient way to formulate algorithms such as őxed-share, which can be interpreted

as “mixing inž the uniform distribution to the outputs of the Hedge algorithm to ensure that the

output iterates are bounded away from zero (Nicolo Cesa-Bianchi, Gaillard, et al. 2012). Note that

the algorithm with no post-hoc adjustment can be interpreted as the special case in which Mt is

the identity mapping Mt(w) ≙ w for all t. When Mt is not explicitly stated, it is assumed to be

the identity mapping and we will write w̃t ≙ wt.

The following lemma provides a regret template for the general algorithm. Observe that several

of the key terms related to the algorithm’s stability replace the mirror descent iterates wt with the

adjusted iterates w̃t ≙Mt(wt); this property is particularly useful when the regularizer becomes

unstable at some w0 ∈ W , in which case we can use Mt to bound iterates chosen by the mirror

descent update away from that point. The trade-off is that we must ensure that the new penalty

terms ξt ≙Dψt+1(ut∣w̃t+1) −Dψt+1(ut∣wt+1) are not too large, which places an implicit restriction on

how much we can adjust the iterates viaMt. Proof of the lemma can be found in Appendix A.2.3.

2Proving an analogous identity is the principle technical challenge in deriving FTRL-based parameter-free algo-
rithms.

27

Lemma 4.1.1. For all t let ψt ∶ W → R be differentiable convex functions, φt ∶ W → R be subdif-

ferentiable convex functions, and let Mt ∶ W → W be arbitrary mappings. Then for any sequence

u ≙ (u1, . . . , uT) in W , Algorithm 2 guarantees

RT (u) ≤DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙1

φt(ut)
+

T

∑
t≙2

⟨∇ψt(w̃t) −∇ψt(w̃1), ut−1 − ut⟩´¹¹¸¹¹¹¶
≙∶Pt

+

T

∑
t≙1

Dψt+1(ut∣w̃t+1) −Dψt+1(ut∣wt+1)´¹¹¹¸¹¹¶
ξt

+

T

∑
t≙1

⟨gt, w̃t −wt+1⟩ −Dψt(wt+1∣w̃t) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¶
≙∶δt

,

where gt ∈ ∂ℓt(w̃t).
We will occasionally use a linearization of the composite penalties w ↦ ⟨∇φt(w̃t),w⟩ for∇φt(w̃t) ∈

∂φt(w̃t). The main reason for doing so is that it can lead to updates with simpler closed-form ex-

pressions. The drawback is that doing this generally leads to slightly worse constants in the regret

bound.

Lemma 4.1.2. Under the same conditions as Lemma 4.1.1, let ∇φt(w̃t) ∈ ∂φt(w̃t) and suppose we

replace φt with its linearization ⟨∇φt(w̃t),w⟩. Then Algorithm 2 guarantees

RT (u) ≤DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙1

φt(ut) +P2∶T + ξ1∶T
+

T

∑
t≙1

⟨gt +∇φt(w̃t), w̃t −wt+1⟩ −Dψt(wt+1∣w̃t) −∆t(wt+1) −φt(w̃t)´¹¹¹¸¹¹¶
≙∶δt

,

where gt ∈ ∂ℓt(w̃t).
The proof is immediate by observing that

T

∑
t≙1

ℓt(w̃t) − ℓt(ut) ≤ T

∑
t≙1

⟨gt, w̃t − ut⟩ ≙ T

∑
t≙1

⟨gt, w̃t − ut⟩ ± [φt(w̃t) −φt(ut)∥
≤ ⟨gt +∇φt(w̃t), w̃t − ut⟩ + T

∑
t≙1

φt(ut) −φt(w̃t)
and then applying Lemma 4.1.1 with losses w ↦ ⟨gt +∇φt(w̃t),w⟩ and composite penalty φt(w) ≡ 0.

28

4.2 Conclusions

In this chapter we introduced our main framework for designing and analyzing OCO algorithms.

Our approach maintains the natural connection to dynamic regret provided by a mirror descent

algorithm, while incorporating the desirable stability properties of an FTRL method. In the re-

maining chapters, we will leverage these properties to design novel algorithms for both static and

dynamic regret alike.

29

Part II

Adaptivity in Stationary Settings

30

Chapter 5

Overview of Part II

In Part II of this thesis, we begin by applying our framework from Chapter 4 to design parameter-

free algorithms for static regret. As discussed in Chapter 3, static regret is a special case of the

more general notion of dynamic regret, so in this part of the thesis we are considering strictly

easier problem settings than what we’ve set out to solve in this thesis. However, starting with static

regret allows us to őrst showcase how to use our framework and build up a set of tools and intuitions

for designing comparator-adaptive algorithms without the additional complexity of a time-varying

comparator. Moreover, we are able to highlight the utility of our approach by developing several

novel parameter-free guarantees as well as improvements to existing results. Notably, in this part

of the thesis we develop the őrst parameter-free algorithms that can be applied in settings with

non-Lipschitz losses, such as quadratic and logistic losses. This part of the thesis is organized as

follows.

Learning with Lipschitz Losses. We begin in Chapter 6 in the setting of G-Lipschitz losses and

unbounded domain W . This is the standard setting in which parameter-free algorithms are studied.

The results in this chapter serve as a nice warm-up demonstrating how to accomplish various forms

of adaptivity in our framework. We őrst show that our approach to algorithm design presented in

Chapter 4 allows us to improve upon existing results in the literature.

• In Section 6.1, we construct a parameter-free which attains the optimal parameter-free rate,

achieving complete second-order adaptivity to the gradients

RT (u) ≤ Ô
⎛⎜⎜⎜⎝
Gϵ + ∥u∥

¿ÁÁÁÁÀ∥g∥21∶T log
⎛⎜⎝
∥u∥√∥g∥21∶T

ϵG
+ 1
⎞⎟⎠
⎞⎟⎟⎟⎠
.

Note that bound is fully second-order adaptive, meaning that nowhere in the bound does

31

the pessimistic upper bound G
√
T ≥

√∥g∥21∶T appear. Prior works have only achieved this

property while maintaining the optimal log (∥u∥√∥g∥21∶T
Gϵ

+ 1) dependence by resorting to the

doubling trick (Cutkosky and Sarlos 2019).

• In Section 6.2, we consider the Lipschitz-adaptive setting in which the learner does not have

a priori access to an upperbound G ≥ ∥gt∥, and instead has to estimate Gt ≙ maxs≤t ∥gs∥
on-the-ŕy. The state-of-the-art result in this setting is the FreeGrad algorithm of Mhammedi

and Koolen 2020, which requires a doubling-like restart strategy to ensure non-vacuous regret.

We use our framework to design a scale-free algorithm which avoids resorting to restarts and

even modestly improves the regret guarantee of FreeGrad. These improvements fall seamlessly

out of our mirror-descent-based approach.

On top of these improvements to existing results, we also develop new types of parameter-free

guarantees. In particular,

• In Section 6.3, we design an algorithm which adapts to the gradient variability, guaranteeing

RT (u) ≤ Ô
⎛⎜⎜⎜⎝
∥u∥
¿ÁÁÁÁÀ T

∑
t≙1

∥∇ℓt(wt) −∇ℓt−1(wt)∥2 log⎛⎜⎝
∥u∥√∑Tt≙1 ∥∇ℓt(wt) −∇ℓt−1(wt)∥2

Gϵ
+ 1
⎞⎟⎠
⎞⎟⎟⎟⎠
.

Notice that this bound can automatically be much smaller than the standard parameter-free

bound which scales with
√
∑Tt≙1 ∥gt∥2 in any problem where the losses are “slowly varyingž. We

achieve this result by leveraging modern extensions of mirror descent (implicit and optimistic

updates) which have no obvious analogue in existing approaches to parameter-free learning

such as coin-betting.

• An alternative parameter-free bound that has received recent interest takes the form

RT (u) ≤ O (ϵ√∥g∥21∶T + ∥u∥√∥g∥21∶T log (∥u∥ /ϵ + 1)) ,
sacriőcing larger regret at the origin to remove the horizon-dependent penalty

√∥g∥21∶T from

the logarithm. In Section 6.4 we show that not only does our approach allow us to imme-

diately derive bounds of this form, but we can in fact achieve any intermediate guarantee

on a spectrum between this and the usual parameter-free bound, leading to a novel fron-

tier of parameter-free guarantees. We provide analogous results for our scale-free and im-

plicit/optimistic algorithm as well.

Learning with Unbounded Losses. The main contributions of Part II of this thesis are

presented in Chapter 7. We consider a relaxation of the standard Lipschitz assumption which

32

captures many standard but non-Lipschitz loss functions as special cases, such as the square loss

and logistic loss. Then, under this assumption,

• We design an algorithm which achieves regret guarantees of the form

RT (u) ≤ Ô (∥u∥G√T log (∥u∥√T /ϵ + 1) +L ∥u∥2√T) ,
where L is a scaling factor related to non-Lipschitzness of the losses. Not only does our result

provide a strict generalization of the usual parameter-free bound, but it is the őrst result in

OCO to achieve non-trivial regret guarantees in a setting where both the domain and the

losses may be unbounded.

• We provide a lower bound demonstrating that our result is unimprovable in general.

• As an application of our result, in Section 7.2 we are able to design the őrst algorithms

for saddle-point optimization which converge in duality gap in unbounded domains without

curvature assumptions such as strong convexity. As a special case, our results can be applied to

bilinearly coupled saddle-point problems, a very common type of problem which captures many

settings of practical interest, such as off-policy policy evaluation in reinforcement learning (see

Section 7.2.1).

33

Chapter 6

Lipschitz Losses

In this chapter, we consider online learning in unbounded domains W ⊆ Rd with G-Lipschitz convex

losses, satisfying ∥∇ℓt(w)∥ ≤ G for any ∇ℓt(w) ∈ ∂ℓt(w) and w ∈W . We begin our study by limiting

our scope to static regret, representing problem settings with stationary dynamics. For simplicity,

in this chapter we assume W ≙ Rd.

6.1 Parameter-free Learning

As a warm-up, we őrst use our framework developed in Chapter 4 to construct a parameter-free

algorithm which achieves the optimal static regret, matching the lower bound in Equation (2.3).

Pseudocode for the algorithm characterized in the following theorem is provided in Algorithm 3 for

convenience.

Theorem 6.1.1. Let ℓ1, . . . , ℓT be G-Lipschitz convex functions and gt ∈ ∂ℓt(wt) for all t. Let ϵ > 0,

Vt ≙ 4G
2
+ ∥g∥21∶t−1, αt ≙ ϵG√

Vt log
2(Vt/G2) , and set ψt(w) ≙ 3 ∫ ∥w∥0 minη≤ 1

G
[log(x/αt+1)

η
+ ηVt]dx. Then

for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ Ô
⎛⎜⎜⎜⎝
Gϵ + ∥u∥

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÁÀ∥g∥21∶T log
⎛⎜⎝
∥u∥√∥g∥21∶T

ϵG
+ 1
⎞⎟⎠ ∨G log

⎛⎜⎝
∥u∥√∥g∥21∶T

ϵG
+ 1
⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠

where Ô(⋅) hides constant and log(log) factors (but not log factors).

The full proof can be found in Appendix B.1.1, along with derivation of the update formula

shown in Algorithm 3. It follows the intuition developed in the Chapter 4: Lemma 4.0.1 implies

RT (u) ≤ ψT+1(u)+∑Tt≙1 δt. Then, we show that ψt satisőes the conditions of Lemma 4.0.2 while the

34

Algorithm 3: Parameter-free Learning via Centered Mirror Descent

1 Input: Lipschitz bound G, Value ϵ > 0
2 Initialize: V1 ≙ 4G

2, w1 ≙ 0, θ1 ≙ 0
3 for t ≙ 1 ∶ T do
4 Play wt, receive subgradient gt

5 Set θt+1 ≙ θt − gt, Vt+1 ≙ Vt + ∥gt∥2, αt+1 ≙ ϵG√
Vt+1 log

2(Vt+1/G2) , and deőne

ft+1(θ) ≙ ⎧⎪⎪⎨⎪⎪⎩
∥θ∥2

36Vt+1
if ∥θ∥ ≤ 6Vt+1

G∥θ∥
3G
−
Vt+1
G2 otherwise

6 Update wt+1 ≙
αt+1θt+1∥θt+1∥ [exp (ft+1(θt+1)) − 1∥

7 end

growth rate ∆t(w) ensures that δt ≤ δ̂t, so that δt ≤ δ̂t ≤ O (2∥gt∥2
Ψ′′t (αt)) ≤ O(αt∥gt∥2√

Vt
). Finally, we choose

αt small enough to ensure ∑Tt≙1 δt ≤ O(1).
Treating log(log) terms as effectively constant, the bound in Theorem 6.1.1 achieves the “idealž

dependence on ∥g∥21∶T in the logarithmic factors. Indeed, given oracle access to ∥u∥ and ∥g∥21∶T , we

could set ϵ ≙ O(∥u∥√∥g∥21∶T
G

), causing all the log terms to disappear from the bound and leaving

only RT (u) ≤ Ô(∥u∥√∥g∥21∶T), which matches the optimal rate that vanilla gradient descent would

achieve with oracle tuning up to a log(log) factor. Prior works typically do not have this property,

failing to avoid additional log penalties even with oracle tuning of ϵ. One exception we are aware of

is Cutkosky and Sarlos (2019, Appendix C.1), which requires resorting to the doubling trick, and

partial exceptions include McMahan and Orabona (2014) and Jun and Orabona (2019), which fail

to maintain complete second-order adaptivity, incurring worst-case dependencies G2T ≥ ∥g∥21∶T in

the bound.

6.2 Lipschitz Adaptivity and Scale-free Learning

The algorithm in the previous section requires a priori knowledge of the Lipschitz constant G to

run. This is unfortunate, as such knowledge may not be known in practice. An ideal algorithm

would instead adapt to an unknown Lipschitz constant G on-the-ŕy, while still maintaining RT (u) ≤
Õ (∥u∥G√T) static regret. Unfortunately, various lower bounds (e.g. Cutkosky and Boahen (2017)

and Mhammedi and Koolen (2020)) show that this goal is not achievable in general. Nevertheless,

it is possible to make signiőcant partial progress.

One simple approach to this problem, suggested by Cutkosky (2019a), is the following reduction

based on a gradient-clipping approach. First, we design an algorithm A which achieves suitable

regret when given prescient “hintsž ht satisfying ht ≥ ∥gt∥ at the start of round t. In practice, we

35

obviously can not provide such hints because we have not yet observed gt, so instead we pass our best

estimate, ht ≙maxs<t ∥gs∥. Then, we simply pass A clipped subgradients gt ≙ gtmin{1, ht∥gt∥}, which

ensures that ht ≥ ∥gt∥, so that the hint given to A is never incorrect. Finally, the outputs wt of A

are constrained to lie in the domains Wt ≙ {w ∈ Rd ∶ ∥w∥ ≤√∑t−1s≙1 ∥gs∥ /Gs} where Gt ≙maxτ≤t ∥gτ∥.
Cutkosky 2019a showed that this approach ensures RT (u) ≤ RAT (u) +GT ∥u∥ +GT√∑Tt≙1 ∥gt∥ /Gt +
GT ∥u∥3, where RAT (u) is the regret of A on the losses gt, and Mhammedi and Koolen (2020) showed

that these additive penalties are unimprovable, so this bound captures the best-possible compromise.

While this hint-based strategy can be used to mitigate the problem of an unknown Lipschitz

constant G, a truly ideal algorithm would be scale-free. That is, the algorithm’s outputs wt are

invariant to any constant rescaling of the gradients gt ↦ cgt for all t. Scale-free regret bounds scale

with the maximal subgradient encountered GT ≙maxt≤T ∥gt∥, while non-scale free bounds typically

depend on some user-speciőed estimate of GT and may perform much worse if this estimate is very

poor. Mhammedi and Koolen (2020) used the approach proposed by Cutkosky (2019a) to develop

FreeGrad, the őrst parameter-free and scale-free algorithm.

FreeGrad unfortunately suffers from an analytical difficulty called the range-ratio problem.

Brieŕy, the range-ratio problem occurs when hT /h1 (called the range-ratio) is very large: in principle

if we set h1 ≙ ∥g1∥, then this quantity could grow arbitrarily large, and so even logarithmic depen-

dencies can make the regret bound vacuous. In order to circumvent this difficulty, Mhammedi and

Koolen 2020 utilize a doubling-based scheme, restarting FreeGrad whenever a particular technical

condition was met. While such restart strategies only lose a constant factor in the regret in theory,

they are unsatisfying: scale-free updates are motivated by potential practical performance beneőts,

yet any algorithm which is forced to restart from scratch several times during deployment is un-

likely to achieve high performance in practice. The following theorem, proven in Appendix B.1.3,

characterizes a new base algorithm that, when combined with the reduction of Cutkosky (2019a),

generates a scale-free algorithm which avoids the range-ratio problem without resorting to restarts.

Our approach employs a simple analysis which follows easily using the tools developed in Chapter 4,

enabling us to achieve tighter logarithmic factors than FreeGrad.

Theorem 6.2.1. Let ℓ1, . . . , ℓT be convex functions and gt ∈ ∂ℓt(wt) for all t. Let h1 ≤ . . . ≤ hT

be a sequence of hints such that ht ≥ ∥gt∥, and assume that ht is provided at the start of each

round t. Set ψt(w) ≙ 3 ∫ ∥w∥0 minη≤ 1

ht

[log(x/αt+1)
η

+ ηVt]dx where Vt ≙ 4h
2
t + ∥g∥21∶t−1, αt ≙ ϵ√

Bt log
2(Bt) ,

Bt ≙ 4∑ts≙1 (4 +∑s−1s′≙1
∥gs′∥2
h2
s′
), and ϵ > 0. Then for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ Ô⎛⎝ϵhT + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀ∥g∥21∶T log(∥u∥√BT+1

ϵ
+ 1) ∨ hT log(∥u∥√BT+1

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎠
where Ô(⋅) hides constant and log(log) factors

36

Algorithm 4: Unbounded, Scale-Free, Lipschitz Adaptivity

1 Initialize: w1 ≙ 0, h1 ≙ 0, G0 ≙ 0, b̃1 ≙ 4, B̃1 ≙ 4b̃1, θ̃1 ≙ 0
2 for t ≙ 1 ∶ T do

3 Deőne Dt ≙

√
∑t−1s≙1

∥gs∥
Gs

and Wt ≙ {w ∈ Rd ∶ ∥w∥ ≤Dt}
4 Play wt̂ ≙ ΠWt(wt) ≙ wtmin{1, Dt∥wt∥}
5 Receive subgradient gt

6 Set gt ≙ gtmin{1, ht∥gt∥}, Gt ≙max{∥gt∥ ,Gt−1}, and ht+1 ≙ Gt

7 Set ℓ̃t(w) ≙ 1
2
⟨gt,w⟩ + 1

2
∥gt∥max{0, ∥wt∥ −Dt} and compute g̃t ∈ ∂ℓ̃t(wt)

8 Set θ̃t+1 ≙ θ̃t − g̃t, Ṽ t+1 ≙ 4h
2
t+1 + ∥g̃∥21∶t, b̃t+1 ≙ b̃t + ∥g̃t∥2h2t

, B̃t+1 ≙ B̃t + 4b̃t, and

9 α̃t+1 ≙
ϵ√

B̃t+1 log
2(B̃t+1)

10 Deőne ft+1(θ) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥θ∥2

36Ṽ t+1
if ∥θ∥ ≤ 6Ṽ t+1

ht+1∥θ∥
3ht+1

−
Ṽ t+1
h2t+1

otherwise

11 Update wt+1 ≙
α̃t+1θ̃t+1∥θ̃t+1∥ [exp (ft+1 (θ̃t+1)) − 1]

12 end

The proof of this Theorem follows the strategy of previous sections: from Lemma 4.0.1 we have

RT (u) ≤ ψT+1(u) + ∑Tt≙1 δt. To bound ∑Tt≙1 δt, we apply Lemma 4.0.2 and show that the growth

rate ∆t(w) is sufficiently large to ensure ∑Tt≙1 δt ≤ ∑Tt≙1 2∥gt∥2
Ψ′′t (x0) for some small x0. The main subtlety

compared to Theorem 6.1.1 is the inŕuence of the terms Bt.

The terms Bt are carefully chosen to address the range-ratio problem in an online fashion:

we show that
√
Bt upper bounds the quantity ht/hτt , where starting from τ1 ≙ 1, the variable τt

roughly tracks the most-recent round t where the ratio ht/hτt−1 exceeds a threshold analogous to

the one used by FreeGrad to trigger restarts. That is, Bt enacts a kind of “soft restartingž by

shrinking wt according to the restarting threshold, just as setting a learning rate of 1/√t in online

gradient descent can be viewed as a “soft restartž in contrast to the standard doubling trick. It

is quite possible that FreeGrad could be similarly modiőed to avoid restarts by incorporating Bt

directly, but this is difficult to verify due to highly non-trivial polynomial expressions appearing in

the analysis.

The full pseudocode for our Scale-free, Lipschitz adaptive algorithm for unbounded domains

is given in Algorithm 4. The update equation is derived in a similar manner to the algorithm in

Section 6.1. The implementation can be understood as the Leashed meta-algorithm of Cutkosky

(2019a) with an instance of the algorithm speciőed in Theorem 6.2.1 as the base algorithm. The

corresponding regret guarantee is immediate using Theorem 6.2.1 along with the with the afore-

mentioned reductions (Cutkosky 2019a, Theorem 3).

37

Algorithm 5: Implicit-Optimistic Centered Mirror Descent

1 Input: Initial regularizer ψ1 ∶ R
d
→ R≥0, initial ℓ̂1(⋅)

2 Initialize: x1 ≙ argminxψ1(x), w1 ≙ argminw ℓ̂1(w) +Dψ1
(w∣x1)

3 for t ≙ 1 ∶ T do
4 Play wt, observe loss function ℓt(⋅)
5 Set gt ∈ ∂ℓt(wt)
6 Choose functions ψt+1, ℓ̂t+1, and deőne ∆t(w) ≙Dψt+1(w∣x1) −Dψt(w∣x1)
7 Update xt+1 ≙ argminx ⟨gt, x⟩ +Dψt(x∣xt) +∆t(x)
8 wt+1 ≙ argminw ℓ̂t+1(w) +Dψt+1(w∣xt+1)
9 end

Corollary 6.2.2. For any u ∈ Rd, Algorithm 4 guarantees

RT (u) ≤ Ô⎛⎝ϵGT + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥

√
BT+1

ϵ
+ 1) ∨GT log(∥u∥√BT+1

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

+GT ∥u∥3 +GT ∥u∥ +GT
¿ÁÁÀ T

∑
t≙1

∥gt∥
Gt

⎞⎠,

where GT ≙ maxτ≤T ∥gτ∥ and BT+1 ≙ 4∑T+1t≙1 (4 +∑t−1s≙1
∥gs∥2
h2s
) and Ô(⋅) hides constant and log(log)

factors.

6.3 Adapting to Gradient Variability

A useful consequence of our mirror descent formulation is that we can easily incorporate the entire

loss function ℓt(⋅) rather than the linear proxy w ↦ ⟨∇ℓt(wt),w⟩ used in the usual mirror descent

update. Mirror descent updates incorporating ℓt(⋅) in their update are called implicit, because

setting wt+1 ≙ argminw∈Rd ℓt(w)+Dψ(w∣wt) leads to an equation of the form wt+1 ≙ ∇ψ
∗(∇ψ(wt)−

∇ℓt(wt+1)), which must be solved for wt+1 to obtain the update.

Implicit updates are appealing in practice because they enable one to more directly incorporate

known properties of the loss functions or additional modeling assumptions to improve convergence

rates (Asi and John C. Duchi 2019). Moreover, in bounded domains there may be advantages even

without any additional assumptions on the loss functions. Indeed, Campolongo and Orabona (2020)

recently developed an implicit mirror descent which guarantees RT (u) ≤ O(min{√∥g∥2
1∶T ,VT})

where VT ≙ ∑Tt≙2 supx∈X ℓt(x) − ℓt−1(x) is the temporal variability of the loss sequence. This bound

has the appealing property that RT (u) ≤ O(1) when the loss functions are őxed ℓt(⋅) ≙ ℓ(⋅).
In this section we leverage our mirror descent formulation to incorporate an additional im-

plicit update on each step to guarantee RT (u) ≤ Õ(∥u∥√∑Tt≙1 ∥∇ℓt(wt) −∇ℓt−1(wt)∥2), which can

be signiőcantly smaller than the usual RT (u) ≤ Õ(∥u∥√∑Tt≙1 ∥∇ℓt(wt)∥2) bound when the loss

38

functions are “slowly movingž. Similar to Campolongo and Orabona (2020), this bound guaran-

tees that RT (u) ≤ O(1) when the loss functions are őxed, yet our result holds even in uncon-

strained domains. In fact, in the setting of Lipschitz losses in unconstrained domains, the quantity√
∑Tt≙1 ∥∇ℓt(wt) −∇ℓt−1(wt)∥2 is perhaps a more suitable way to achieve this property, since in

unbounded domains VT is typically inőnite unless ℓt − ℓt−1 is constant.

The only prior method we are aware of to incorporate implicit updates into parameter-free learn-

ing was recently developed by K. Chen, Cutkosky, and Orabona 2022. They propose an interesting

new regret decomposition and apply it to develop closed-form implicit updates for truncated linear

losses. We adopt different goals: without attempting to build efficient closed-form updates, we

consider general loss functions and show that implicit updates fall easily out of our mirror-descent

formulation.

Our algorithm is derived as a special case of the algorithm shown in Algorithm 5, which can

be understood as an instance of centered mirror descent with an additional optimistic step on each

round. The optimistic step leverages an arbitrary guess ℓ̂t+1(⋅) about what the next loss function

will be. Intuitively, if the learner could deduce the trajectory of the loss functions, they’d be able

to “think aheadž and play a point wt+1 for which the next loss ℓt+1(⋅) is minimized. The follow-

ing theorem provides an algorithm which guarantees RT (u) ≤ Õ(∥u∥√∑Tt≙1 ∥∇ℓt(wt) −∇ℓ̂t(wt)∥2)
using an arbitrary sequence of optimistic guesses ℓ̂t(⋅).
Theorem 6.3.1. Let ℓ1, . . . , ℓT and ℓ̂1, . . . , ℓ̂T be G-Lipschitz convex functions. For all t, let

ψt(w) ≙ 3 ∫ ∥w∥0 minη≤ 1

2G
[log(x/α̂t+1)

η
+ ηV̂ t]dx, where V̂ t ≙ 16G2

+∑t−1s≙1 ∥∇ℓs(ws) − ∇ℓ̂s(ws)∥2, α̂t ≙
ϵG√

V̂ t log
2(V̂ t/G2) , and ϵ > 0. Then for all u ∈ Rd, Algorithm 5 guarantees

RT (u) ≤ Ô⎛⎜⎜⎝ϵG + ∥u∥
⎡⎢⎢⎢⎢⎢⎣
¿ÁÁÁÀV̂ T+1 log

⎛⎝∥u∥
√
V̂ T+1

Gϵ
+ 1
⎞⎠ ∨G log

⎛⎝∥u∥
√
V̂ T+1

Gϵ
+ 1
⎞⎠
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠ ,

where Ô(⋅) hides constant and log(log) factors.

The proof is similar to the proof of Theorem 6.1.1, with some tweaks to account for the optimistic

step, and is deferred to Appendix B.1.2. As an immediate corollary, we have that by setting

ℓ̂t+1(w) ≙ ℓt(w), the regret is bounded as RT (u) ≤ Õ(∥u∥√∑Tt≙1 ∥∇ℓt(wt) −∇ℓt−1(wt)∥2). Bounds

of this form have previously only been obtained in bounded domains (Zhao et al. 2020).

Note that our algorithm only makes use of an implicit update during the optimistic step. One

could also implement an implicit update in the primary update, but it is unclear what concrete

improvements this would yield in the regret bound in the unbounded setting. We leave this as an

exciting direction for future work.

39

6.4 Trade-offs in the Horizon Dependence

In the preceeding sections, we focused primarily on standard parameter-free guarantees of the form

RT (u) ≤ Õ
⎛⎜⎜⎜⎝
Gϵ + ∥u∥

¿ÁÁÁÁÀ∥g∥21∶T log
⎛⎜⎝
∥u∥√∥g∥21∶T

Gϵ
+ 1
⎞⎟⎠
⎞⎟⎟⎟⎠
. (6.1)

However, recently there has been interest in a variant of Equation (6.1) that scales instead as

RT (u) ≤ Õ⎛⎜⎝ϵ
√∥g∥21∶T + ∥u∥

¿ÁÁÀ∥g∥21∶T log(∥u∥
ϵ
+ 1)⎞⎟⎠ (6.2)

which captures the optimal asymptotic dependence on the variance terms ∥g∥21∶T by moving them

out of the logarithm (Z. Zhang, Cutkosky, and I. Paschalidis 2022b; Z. Zhang, Cutkosky, and I.

Paschalidis 2022a; Z. Zhang, H. Yang, et al. 2023; Z. Zhang, Cutkosky, and Y. Paschalidis 2023). It is

easy to see that non-adaptive forms of Equation (6.2) can be achieved using the usual parameter-free

guarantee, Equation (6.1), by setting ϵ ≙
√
T . The result can likewise also be achieved in a horizon-

independent manner by applying the doubling trick. The őrst work to achieve guarantees of the form

RT (u) ≤ O(Gϵ√T +G ∥u∥√T log(∥u∥ /ϵ + 1)) without resorting to the doubling trick was Z. Zhang,

Cutkosky, and I. Paschalidis 2022b, using a novel approach based on discretizing the dynamics of

a continuous-time potential function. The fully-adaptive bound shown in Equation (6.2) was then

later achieved by Z. Zhang, H. Yang, et al. 2023 by using an improved discretization strategy.

Inspired by these works, in this section we show that bounds in the form of Equation (6.2) can

also be attained in a straight-forward manner using our mirror descent framework. Interestingly,

each of our static regret algorithms attain a bound analogous to Equation (6.2) by simply setting

αt ≙ ϵ for all t. The following proposition shows the core argument in the context of our scale-free

algorithm in Section 6.2. Analogous results hold for the parameter-free algorithm in Section 6.1

and the optimistic algorithm in Section 6.3 using an identical argument.

Proposition 6.4.1. Under the same assumptions as Theorem 6.2.1, suppose we instead set αt ≙ ϵ

for all t. Then

RT (u) ≤ O⎛⎜⎝ϵ
√∥g∥21∶T + ∥u∥

⎡⎢⎢⎢⎢⎣
¿ÁÁÀ∥g∥21∶T log(∥u∥

ϵ
+ 1) ∨ hT log(∥u∥

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎟⎠ .

Proof. Following the same arguments as Theorem 6.2.1 and recalling that Vt ≙ 4h
2
t +∥g∥21∶t−1 ≥ ∥g∥21∶t,

40

we can bound

RT (u) ≤ ψT+1(u) + T

∑
t≙1

2αt ∥gt∥2√
Vt

≤ ψT+1(u) + 2ϵ T

∑
t≙1

∥gt∥2√∥g∥21∶t ≤ ψT+1(u) + 4ϵ
√∥g∥21∶T ,

where the last line invokes Lemma A.3.3. The result then follows by using the same argument as

Theorem 6.2.1 to bound ψT+1(u) ≤ O(∥u∥ [√∥g∥21∶T log (∥u∥ /ϵ + 1) ∨ hT log (∥u∥ /ϵ + 1)]).
Interestingly, as observed by Z. Zhang, H. Yang, et al. 2023, the scale-free guarantees in the

form of Equation (6.2) naturally avoid the range-ratio problem. Indeed, Proposition 6.4.1 requires

neither the restarting strategy of FreeGrad nor the soft-restarting scheme of our scale-free algorithm

in Theorem 6.2.1. This is because in order to achieve a scale-free version of the standard parameter-

free guarantee (Equation (6.1)), we must balance out the gradient “unitsž in the logarithm term of

the regularizer, and this unit-balancing is what gives rise to the range-ratio problem. By instead

setting αt ≙ ϵ, no such unit correction is needed and the range-ratio problem is naturally avoided.

More generally, it is possible to achieve any of the intermediate results between the two types

of parameter-free guarantee using a similar argument to Proposition 6.4.1. The following theorem

provides a result analogous to Theorem 6.1.1, and is proven in Appendix B.1.4. An equivalent result

also holds for our optimistic algorithm in Section 6.3, which we defer to Appendix B.1.4.

Theorem 6.4.2. Under the same assumptions as Theorem 6.1.1, let ρ ∈ [0, 1
2
) and suppose we set

αt ≙ ϵG
2ρ/V ρ

t for all t. Then for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ O⎛⎝ ϵG
2ρ

1 − 2ρ
V

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥V ρ

T+1

ϵG2ρ
+ 1) ∨G log(∥u∥V ρ

T+1

ϵG2ρ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎠,
where VT+1 ≤ O(∥g∥21∶T).

Hence, at ρ ≙ 0 we have the bound matching the bound in Z. Zhang, H. Yang, et al. 2023 up to

constant terms, and as ρ → 1
2

we move toward the usual parameter-free bound, Equation (6.1). It

should be noted that this result is complimentary to Theorem 6.1.1, rather than a generalization:

the leading term blows up as we approach ρ ≙ 1
2
. This is unsurprising, as the log log(T) penalty

incurred by setting αt ≙
ϵ√

Vt log
2(Vt/G2) in Theorem 6.1.1 is necessary Ð without this log log(T)

dependence, it would be possible to use the regret guarantee to contradict the Law of Iterated

Logarithm. Indeed, there are well-known connections between regret guarantees and concentration

inequalities (Rakhlin and Sridharan 2017), and the regret guarantees of parameter-free algorithms

in particular can be used to derive tight concentration inequalities matching the Law of Iterated

Logarithm (see, e.g., Orabona and Jun 2023).

41

A similar result can also be shown our scale-free algorithm (Proof in Appendix B.1.4).

Theorem 6.4.3. Under the same assumptions as Theorem 6.2.1, let ρ ∈ [0, 1
2
) and suppose we

set Bρ
t ≙ (4∑ts≙1 [2 1

ρ +∑s−1s′≙1
∥gs′∥2
h2
s′
])ρ and αt ≙ ϵ/Bρ

t for all t.1 Then for all u ∈ Rd, Algorithm 2

guarantees

RT (u) ≤ O⎛⎜⎝
ϵh

2ρ
T

1 − 2ρ
V

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥Bρ

T+1

ϵ
+ 1) ∨ hT log(∥u∥Bρ

T+1

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎟⎠
where and VT+1 ≤ O(∥g∥21∶T).

6.5 Conclusions

In this chapter, we used our framework developed in Chapter 4 to design new parameter-free algo-

rithms in the standard setting of G-Lipschitz losses. Our approach allows us to streamline existing

results by avoiding applications of the doubling trick or related restart strategies, while also enabling

improvements to the existing bounds (Sections 6.1 and 6.2). Moreover, our approach naturally leads

to new parameter-free guarantees that could not be easily obtained using previous frameworks for

parameter-free online learning such as coin-betting (Sections 6.3 and 6.4). In the next chapter, we

will extend these techniques to relax the restrictive Lipschitz assumption, enabling parameter-free

learning in several natural problem settings which have unbounded domains and losses.

1Note that limρ→0B
ρ
t ≙ 2, so for ρ ≙ 0 we allow an abuse of notation by letting Bρt ∶≙ 2 to avoid specifying separate

cases.

42

Chapter 7

Beyond Lipschitz Losses

Up to this point, our discussion has revolved around parameter-free algorithms for Lipschitz loss

functions Ð losses ℓ such that for all w ∈ W and gw ∈ ∂ℓ(w), ∥gw∥ ≤ G for some G. This is

unfortunate because some of the most pervasive loss functions in machine learning are in fact not

Lipschitz on an unbounded domain. The obvious example being prediction error type losses such

as ℓt(w) ≙ 1
2
∥yt −w∥2 for some target vector yt: clearly for this loss we have ∥∇ℓt(w)∥ ≙ ∥yt −w∥,

which can be arbitrarily large when ∥w∥ is unbounded, so ℓt is not Lipschitz.

Another use-case where the Lipschitz assumption tends to fail is in saddle-point optimization.

Let L ∶ X ×Y → R be a convex-concave function and consider the following min-max problem:

min
x∗∈X

max
y∗∈Y
L(x∗, y∗).

A common approach to such problems is to reduce this problem into an online convex optimization

problem with gt ≙ (gxt ,−gyt)⊺ where gxt ∈ ∂xL(xt, yt) and g
y
t ∈ ∂yL(xt, yt) (see Section 7.2 for more

details). In this setting, ∥gt∥ will tend to be unbounded if X and/or Y are unbounded. The reason

being that most interesting saddle-point problem will contain some coupling between the variables

x ∈ X and y ∈ Y . For instance, let B be an arbitrary coupling matrix and consider a simple bilinear

optimization problem such as L(x, y) ≙ ⟨x,By⟩ + f(x) − g(y) where f(x) and g(x) are Lipschitz

convex functions. Here we have ∇xL(x, y) ≙ By + ∇f(x) Ð which can grow arbitrarily large for

unbounded Y Ð and likewise ∇yL(x, y) ≙ B⊺x−∇g(y) can grow without bound for unbounded X .

Our goal in this chapter is to develop algorithms which achieve favorable regret guarantees when

both the domain W and the losses may be unbounded.

43

7.1 Online Learning with Quadratically Bounded Losses

In an unbounded domain with unbounded losses, it will generally be impossible to avoid linear

regret without some additional assumptions. Intuitively, what’s missing in this problem is a frame-

of-reference for the magnitude of a given loss. In the Lipschitz or bounded-range settings, the learner

always has a frame-of-reference for the worst-case loss they might encounter. In contrast, without

these assumptions, hindsight becomes the only frame-of-reference, and the adversary can exploit

this to “trickž the learner into playing too greedily or too conservatively.

To make the problem tractable, yet still allowing the losses to have unbounded range and

subgradients, we assume that the subgradients are bounded for all t at some reference point w0,

but may become arbitrarily large away from w0. This effectively gives the learner access to an a

priori frame-of-reference for loss magnitudes, yet still captures many problem settings where the

losses can become arbitrarily large in an unbounded domain.

Deőnition 7.1.1. Let (W, ∥⋅∥) be a normed space. A function ℓ ∶ W → R is (G,L)-quadratically

bounded w.r.t. ∥⋅∥ at w0 if for any w ∈W and ∇ℓ(w) ∈ ∂ℓ(w) it holds that

∥∇ℓ(w)∥ ≤ G +L ∥w −w0∥ . (7.1)

Note that Deőnition 7.1.1 is a strict generalization of the standard Lipschitz condition: any G-

Lipschitz function is (G,0)-quadratically bounded. The deőnition also captures L-smooth functions

as a special case, since any L-smooth function is (∥∂ℓt(w0)∥ , L)-quadratically bounded at w0. How-

ever, in general a function satisfying the quadratically bounded property need not be smooth. As

a simple illustration, note that if f(w) is an L-smooth and (G,L)-quadratically bounded function,

then f(w) + c ∥w∥ will be (G + c,L) quadratically bounded but non-smooth. For the remainder of

the paper we assume without loss of generality that w0 ≙ 0 and ∥⋅∥ is the Euclidean norm.

The quadratically bounded assumption was initially studied in the context of stochastic opti-

mization by Telgarsky (2022), where it was sufficient to attain convergence in several settings of

practical relevance. In this work, we show that it is also sufficient to achieve sublinear regret even

in adversarial problem settings. We will in fact take it one step further and consider a stronger

Online Linear Optimization (OLO) version of the problem. We say that a sequence {gt} is (Gt, Lt)-
quadratically bounded w.r.t. {wt} if for every t we have ∥gt∥ ≤ Gt+Lt ∥wt∥. Then using the standard

reduction from OCO to OLO, for any sequence of (Gt, Lt)-quadratically bounded convex functions

we have the following regret upper bound:

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(u) ≤ T

∑
t≙1

⟨gt,wt − u⟩ ,

44

where gt ∈ ∂ℓt(wt) and {gt} is a (Gt, Lt)-quadratically bounded sequence w.r.t. {wt}. Hence, one can

solve OCO problems involving quadratically bounded losses using any OLO algorithm that achieves

sublinear regret against sequences {gt} that are quadratically bounded w.r.t. its outputs {wt}.
Note that this is potentially a more difficult problem, as it gives the adversary freedom to impose

severe penalties whenever the learner plays large wt, yet this effect is experienced asymmetrically

by the comparator: the comparator can have large norm and not necessarily experience large losses

unless u is aligned with gt and the learner plays a point ∥wt∥∝ ∥u∥. We refer to this harder problem

setting as the QB-OLO setting, and QB-OCO for the setting where adversary must play ℓt satisfying

Deőnition 7.1.1.

Surprisingly, it turns out that it is possible to achieve sublinear regret even in the QB-OLO

setting. The following theorem provides an algorithm which achieves sublinear regret and requires

no instance-speciőc hyperparameter tuning. Proof can be found in Appendix B.2.1.

Theorem 7.1.2. Let A be an online learning algorithm and let wt ∈ W its output on round t.

Let {gt} be a (Gt, Lt)-quadratically bounded sequence w.r.t. {wt}, where Gt ∈ [0,Gmax∥ and Lt ∈[0, Lmax∥ for all t. Let ϵ > 0, Vt+1 ≙ 4G2
max + G

2
1∶t, ρt+1 ≙

1√
L2
max+L

2

1∶t

, αt+1 ≙
ϵGmax√

Vt+1 log
2(Vt+1/G2

max) .
Denote Ψt(w) ≙ 3 ∫ ∥w∥0 minη≤ 1

Gmax

[log(x/αt+1)
η

+ ηVt]dx and set

ψt(w) ≙ Ψt(w) + 2

ρt
∥w∥2 , φt(w) ≙ L2

t

2
√
L2
1∶t

∥w∥2 .
Then for any u ∈W , Algorithm 6 guarantees

RT (u) ≤ Ô
⎛⎜⎜⎜⎝
ϵGmax + ∥u∥

¿ÁÁÁÁÀG2
1∶T log

⎛⎜⎝
∥u∥√G2

1∶T

ϵGmax

+ 1
⎞⎟⎠ + ∥u∥2

√
L2
1∶T

⎞⎟⎟⎟⎠
,

where Ô(⋅) hides constant and log log terms.

Let us brieŕy develop some intuition for how the above result is constructed. Algorithm 6 is

an instance of Centered Mirror Descent (Algorithm 2), applied with a linear composite penalties

w ↦ ⟨∇φt(wt),w⟩, which by Lemma 4.1.2 admits a generic regret guarantee of the form RT (u) ≤
ψT (u)+∑Tt≙1φt(u)+∑Tt≙1 δt, where the δt are similar to the “stabilityž terms encountered in vanilla

Mirror Descent, but with certain additional negative terms ∆t and φt:

δt ≤ O(⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt)).
It’s easily veriőed that that the ψT+1(u) + ∑Tt≙1φt(u) terms in Theorem 7.1.2 match the terms

in the stated upper bound, so the main difficulty is making sure that the stability terms ∑Tt≙1 δt

45

Algorithm 6: Algorithm for Quadratically Bounded Losses

1 Input: ψ1 ∶W → R≥0 with minw∈W ψ1(w) ≙ 0, Gmax and Lmax

2 Initialize: w1 ≙ argminw∈W ψ1(w)
3 for t ≙ 1 ∶ T do
4 Play wt, observe gt ∈ ∂ℓt(wt)
5 Choose Gt and Lt satisfying ∥gt∥ ≤ Gt +Lt ∥wt∥
6 Choose functions ψt+1, φt
7 Set ∇φt(wt) ∈ ∂φt(wt) and g̃t ≙ gt +∇φt(wt)
8 Set ∆t(w) ≙ ψt+1(w) − ψt(w)
9 Update

wt+1 ≙ argminw∈W ⟨g̃t,w⟩ +Dψt(w∣wt) +∆t(w)
10 end

disappear. Crucially, because {gt} is a (Gt, Lt)-quadratically bounded sequence w.r.t. {wt}, we

have ∥gt∥ ≤ Gt + Lt ∥wt∥. The utility of this is that we can design separate regularizers control the

“Lipschitz partž Gt and the “non-Lipschitz partž Lt ∥wt∥. In particular, using a similar argument to

the one in Chapter 6, by setting Ψt(w) ≙ O(Gmax ∥w∥√T log (∥w∥√T /ϵ)) we can ensure that the

Lipschitz part of the bound is well-controlled:

T

∑
t≙1

Gt ∥wt −wt+1∥−DΨt(wt+1∣wt)−∆t(wt+1)≤O(1).
However, in general this Ψt is not strong enough to control the non-Lipschitz part Lt ∥wt∥. Instead,

for this term we use Φt(w) ≙ O (Lmax

√
T ∥w∥2), and then using standard arguments for Mirror

Descent with a strongly convex regularizer, it can be shown that

Lt ∥wt∥ ∥wt −wt+1∥ −DΦt(wt+1∣wt) −φt(wt) ≤ O (Lt ∥wt∥2√
T
−φt(wt)) ≤ 0

by choosing φt(wt) ≙ O (Lt∥wt∥2√
T
).

Note that in the setting of G-Lipschitz losses we have Lmax ≙ 0 and hence set Gt ≙ ∥gt∥, so the

bound reduces to the usual parameter-free guarantee RT (u) ≤ Ô⎛⎝∥u∥
√
∑Tt≙1 ∥gt∥2 log (∥u∥√Tϵ

+ 1)⎞⎠
studied in the previous chapter, which is known to be optimal up to constant and log(log) terms

(Mcmahan and M. Streeter 2012; Orabona 2013). On the other hand, if Lmax > 0 the algo-

rithm can choose any Gt ≤ Gmax and Lt ≤ Lmax such that Gt + Lt ∥wt∥ ≥ ∥gt∥. Ideally these

factors should be chosen to be tight Ð that is, to minimize G + L ∥wt∥ subject to the constraints{G ≤ Gmax, L ≤ Lmax,G +L ∥wt∥ ≥ ∥gt∥}. However, there may be many such (G,L) satisfying these

46

conditions, and in general it is unclear whether there exists a general-purpose strategy to choose

among them without further assumptions. Indeed, Theorem 7.1.2 suggests that when ∥u∥ is very

large, we’d prefer to set the Lt’s smaller at the expense of large Gt’s, and vice-versa when ∥u∥ is

sufficiently small, so optimally trading off Gt and Lt would require some prior knowledge about ∥u∥.
Nevertheless, there are many situations in which one can choose (Gt, Lt) pairs along some

pareto-frontier. As an illustrative example, consider an online regression setting in which ℓt(w) ≙
1
2
(yt − ⟨xt,w⟩)2 for some target variable yt ∈ R and feature vector xt ∈ R

d. Observe that ∇ℓt(wt) ≙
−(yt − ⟨xt,wt⟩)xt, so setting Gt ≙ ∣yt∣ ∥xt∥ and Lt ≙ ∣⟨xt,wt/ ∥wt∥⟩∣ ∥xt∥, we have

∥∇ℓt(wt)∥ ≙ ∥(yt − ⟨xt,wt⟩)xt∥ ≤ Gt +Lt ∥wt∥ ,
so {∇ℓt(wt)} is a (Gt, Lt)-quadratically bounded sequence w.r.t. {wt}, and Theorem 7.1.2 quaran-

tees regret scaling as

Õ
⎛⎜⎝∥u∥
¿ÁÁÀ T

∑
t≙1

y2t ∥xt∥2 + ∥u∥2
¿ÁÁÀ T

∑
t≙1

⟨xt, wt∥wt∥⟩
2∥xt∥2⎞⎟⎠ ,

which is more adaptive to sequence of observed feature vectors xt and targets yt than the worst-case

bound of RT (u) ≤ Õ (∥u∥ ∣ymax∣ ∥xmax∥√T + ∥u∥2 ∥xmax∥2√T).
Finally, notice that for Lmax > 0 Algorithm 6 suffers an additional O(Lmax ∥u∥2√T) penalty

which is not present in the Lipschitz losses setting. The following theorem demonstrates that this

penalty is in fact unavoidable in the QB-OLO setting. Proof can be found in Appendix B.2.1.

Theorem 7.1.3. Let A be an algorithm deőned over R
2 and let wt denote the output of A on round

t. Let ϵ > 0 and suppose A guarantees RT (0) ≤ ϵ against any quadratically bounded sequence {gt}.
Then for any T ≥ 1, G > 0 and L ≥ 0 there exists a sequence g1, . . . , gT satisfying ∥gt∥ ≤ G + L ∥wt∥
and a comparator u ∈ R2 such that

RT (u) ≥ Ω(G ∥u∥√T log (∥u∥√T /ϵ) ∨L ∥u∥2√T) .
Remark 7.1.4. An alternative way to approach online learning in our problem setting would be

to apply an algorithm which is both comparator-adaptive and Lipschitz-adaptive, since these algo-

rithms do not require an a priori upper bound on ∥u∥ nor on ∥gt∥. Theorem 7.1.3 demonstrates that

this approach would be sub-optimal in our setting. Indeed, Mhammedi and Koolen (2020) show that

without prior knowledge of a Lipschitz bound, there is an unavoidable O(∥u∥3maxt≤T ∥gt∥) penalty

associated with comparator-norm adaptivity, which can lead to a sub-optimal O(∥u∥3Lmaxt ∥wt∥) ≥
O(L ∥u∥3√T) dependence in our problem setting.

47

Algorithm 7: Saddle-point Reduction

1 Input Domain W ≙ X ×Y , OLO Algorithm A
2 for t ≙ 1 ∶ T do
3 Get wt ≙ (xt, yt) ∈W from A
4 Receive gxt ∈ ∂xL(xt, yt) and gyt ∈ ∂y[−L(xt, yt)∥
5 Send gt ≙ (gxt , gyt) to A as the tth subgradient

6 end

7 Return wT ≙ (∑Tt≙1 xtT
,
∑
T
t≙1 yt
T
)

7.2 Unconstrained Saddle-point Optimization

As a result of the algorithm in the previous section, we are immediately able to produce a novel

algorithm for saddle-point optimization in unbounded domains. Consider the following convex-

concave saddle-point problem:

inf
x∈X

sup
y∈Y

L(x, y) (7.2)

where X and Y are convex sets, L(⋅, y) is convex for all y ∈ Y , and L(x, ⋅) is concave for all x ∈ X .

Solutions to Equation (7.2) are captured by the notion of a saddle-point : a point (x∗, y∗) ∈ X × Y
is called saddle-point of L if for any (x, y) ∈ X ×Y it satisőes

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).
When such a point exists, it satisőes L(x∗, y∗) ≙ infx∈X supy∈Y L(x, y) ≙ supy∈Y infx∈X L(x, y). Qual-

ity of a candidate solution (x, y) ∈ X ×Y is commonly measured in terms of the duality gap:

G(x, y) def
≙ sup

y∗∈Y

L(x, y∗) − inf
x∗∈X
L(x∗, y).

It can be shown that the duality gap is non-negative, and that any (x, y) ∈ X × Y such that

G(x, y) ≙ 0 must be a saddle-point (Boyd and Vandenberghe 2004). Fortunately, any such gap is

easily controlled using an online learning algorithm via the well-known reduction to Online Linear

Optimization (OLO) shown in Algorithm 7. We provide a simple proof in our notation for convience

to the reader, though we emphasize that this is a very common lemma in the saddle-point literature.

Lemma 7.2.1. For any ẘ ≙ (x̊, ẙ) ∈ X ×Y, Algorithm 7 guarantees

L(xT , ẙ) −L(x̊, yT) ≤ ∑Tt≙1 ⟨gt,wt − ẘ⟩
T

≙
RAT (ẘ)
T

.

48

Proof. To see why this is true, observe that by convexity of x ↦ L(x, y) and y ↦ −L(x, y), we can

apply Jensen’s inequality in both arguments to get:

L(xT , ẙ) −L(x̊, yT) ≤ 1

T
[T∑
t≙1

L(xt, ẙ) −L(x̊, yt)]
now add and subtract L(xt, yt):

≙
∑Tt≙1L(xt, yt) −L(x̊, yt) −L(xt, yt) +L(xt, ẙ)

T

let gxt ∈ ∂xL(xt, yt) and gyt ∈ ∂y[−L(xt, yt)∥ and again use convexity to upper bound both difference

terms:

≤
∑Tt≙1 ⟨gxt , xt − x̊⟩ + ⟨gyt , yt − ẙ⟩

T

and now deőne wt ≙ (xt, yt), ẘ ≙ (x̊, ẙ), and gt ≙ (gxt , gyt) to complete the proof:

≙
∑Tt≙1 ⟨gt,wt − ẘ⟩

T
≙
RAT (ẘ)
T

.

Thus in order to control the duality gap G(x, y), it suffices to provide any OLO algorithm that

achieves sublinear regret under the given assumptions.

The only existing work to achieve a comparator-adaptive convergence guarantee for the duality

gap in general saddle-point problems is Liu and Orabona (2022). Their approach does indeed

guarantee a rate of the form G(xT , yT) ≤ RAT (w∗)
T

≤ Õ (G∥w∗∥√
T
) under the assumption that the

L(⋅, ⋅) is G-Lipschitz in both arguments, which is justiőed by assuming that X and Y are bounded

domains. However, generally saddle-point problems can have some coupling between the x ∈ X and

y ∈ Y , leading to factors of ∥x∥ and ∥y∥ showing up in both ∥∇xL(x, y)∥ and ∥∇yL(x, y)∥. Thus,

even in a bounded domain a bound of the form RAT (w∗) ≤ Õ (∥w∗∥G√T) actually still falls short

of being fully comparator-adaptive because the Lipschitz constant G is subtly hiding factors of

DX ≙ maxx,x′∈X ∥x − x′∥ and DY ≙ maxy,y′∈Y ∥y − y′∥. See Section 7.2.1 for a more explicit example

of this issue.

On the other hand, there are many interesting problems in which L(⋅, ⋅) is quadratically bounded

in both arguments, which will enable us to immediately apply Algorithm 6 to the linear losses

gt ≙ (gxt , gyt) as described above. In particular, we have the following:

49

Proposition 7.2.2. Suppose that for all ỹ ∈ Y, the function x ↦ L(x, ỹ) is (Gx + Lxy ∥ỹ∥ , Lxx)-
quadratically bounded, and for all x̃ ∈ X the function y ↦ −L(x̃, y) is (Gy + Lyx ∥x̃∥ , Lyy)-
quadratically bounded. Let gxt ∈ ∂xL(xt, yt) and g

y
t ∈ ∂y[−L(xt, yt)∥, and set gt ≙ (gxt , gyt). Then

{gt} is a (Gw, Lw)-quadratically bounded sequence w.r.t. norm ∥(x, y)∥ ≙ √∥x∥2 + ∥y∥2, where

Gw ≤ O (√G2
x +G

2
y) and Lw ≤ O (√L2

xx +L
2
yy +L

2
xy +L

2
yx).

Proof. Let (x, y) ∈W . For gx ∈ ∂xL(x, y) observe that

∥gx∥2 ≤ (Gx +Lxy ∥y∥ +Lxx ∥x∥)2
≤ 5 (G2

x +L
2
xy ∥y∥2 +L2

xx ∥x∥2) ,
where the őrst line uses the assumption that x ↦ L(x, y) is (Gx + Lxy ∥y∥ , Lxx) quadratically

bounded for any y ∈ Y and the last line uses (a + b + c)2 ≤ 5a2 + 5b2 + 5c2. Likewise,

∥gy∥2 ≤ 5 (G2
y +L

2
yx ∥x∥2 +L2

yy ∥y∥2) ,
and so overall, letting gw ≙ (gx, gy) we have

∥gw∥ ≙√∥gx∥2 + ∥gy∥2
(⋆)
≤
√
5
√
G2
x +G

2
y´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≙∶Gw

+
√
5
√
L2
xx +L

2
yy +L

2
xy +L

2
yx´¹¹¹¸¹¹¶

Lw

√∥x∥2 + ∥y∥2

≙ Gw +Lw ∥w∥
where (⋆) uses

√
x + y ≤

√
x +
√
y for x, y ≥ 0.

Hence, with this in hand we can use Algorithm 6 to guarantee that for any ẘ ≙ (x̊, ẙ) ∈W ,

L(xT , ẙ) −L(x̊, yT) Lemma 7.2.1
≤

RAT (ẘ)
T

Theorem 7.1.2
≤ Õ (Gw ∥ẘ∥ +Lw ∥ẘ∥2√

T
) ,

which is indeed fully adaptive to comparator ẘ.

It is important to note that our results in this section are made possible because our algorithm

works even in the more difficult QB-OLO setting. It may be possible to get a similar result by

using two QB-OCO algorithms designed for quadratically bounded functions ℓt, though it it seems

more challenging. In particular, letting ℓxt (⋅) ≙ L(⋅, yt) and ℓ
y
t (⋅) ≙ −L(xt, ⋅), one might instead run

separate algorithms against the quadratically bounded loss sequences ℓxt and ℓyt . However, now both

50

algorithms need to very carefully regularize their iterates such that the gradients received by the

other algorithm are never too large, since ∥∇ℓxt (xt)∥ may can contain factors of ∥yt∥ and ∥∇ℓyt (yt)∥
can contain factors of ∥xt∥. Hence careful coordination between the two algorithms will be required.

The upshot is that by using un-linearized losses ℓxt and ℓ
y
t it may be possible to get faster rates in

some settings by better accounting for local curvature. We leave this as an exciting direction for

future investigation.

7.2.1 Example: Bilinearly-coupled saddle-points

Before moving on, let us make things less abstract with a simple example. Consider a bilinearly-

coupled saddle-point problem of the form

L(x, y) ≙ Fx(x) +H(x, y) − Fy(y) (7.3)

where Fx and Fy are convex and (G̃x, L̃x) and (G̃y, L̃y)-quadratically bounded respectively, and

H(x, y) ≙ ⟨x,By⟩ − ⟨ux, x⟩ + ⟨uy, y⟩ for some coupling matrix B and vectors ux, uy. This problem

captures several notable problem settings, such as minimizing the mean-squared projected bellman

error for off-policy policy evaluation in reinforcement learning, quadratic games, and regularized

empirical risk minimization (Du et al. 2022). The following proposition demonstrates that these

problems do indeed satisfy the conditions of Proposition 7.2.2.

Proposition 7.2.3. Equation (7.3) satisőes the assumptions of Proposition 7.2.2 with Gx ≙ G̃x +∥ux∥, Lxx ≙ L̃x, Lxy ≙ ∥B∥op, Gy ≙ G̃y + ∥uy∥, Lyy ≙ L̃y, and Lyx ≙ ∥B⊺∥op.
Proof. Observe that for any (x, y) ∈ X ×Y and gx ∈ ∂xL(x, y), we have

∥gx∥ ≙ ∥∇Fx(x) +By − ux∥
≤ ∥∇Fx(x)∥ + ∥B∥op ∥y∥ + ∥ux∥
≤ G̃x + ∥ux∥ + L̃x ∥x∥ + ∥B∥op ∥y∥ ,

where ∇Fx(x) ∈ ∂Fx(x) and ∥B∥op denotes the operator norm ∥B∥op ≙ supx∶∥x∥≙1 ∥Bx∥. Likewise,

∥gy∥ ≤ G̃y + ∥uy∥ + L̃y ∥y∥ + ∥B⊺∥op ∥x∥ .
Hence, L(⋅, ⋅) satisőes the assumptions of Proposition 7.2.2 with Gx ≙ G̃x + ∥ux∥, Lxx ≙ L̃x, Lxy ≙∥B∥op, Gy ≙ G̃y + ∥uy∥, Lyy ≙ L̃y, and Lyx ≙ ∥B⊺∥op.

We note that this speciőc example is mainly for illustrative purposes Ð in many instances of

Equation (7.3) the functions Fx and Fy satisfy stronger curvature assumptions than used here, and

51

our approach would be improved by more explicitly leveraging these assumptions when they hold.

Nevertheless, our approach here does have a few key beneőts: őrst, we naturally attain convergence

in duality gap with an explicit dependence on the comparator, whereas prior works generally only

attain a bound of this form making stronger assumptions such as strong convexity or one of the

boundedness assumptions we’re seeking to avoid (Liu and Orabona 2022; Du et al. 2022; Ibrahim et

al. 2020; Azizian et al. 2020). Second, our approach can be applied under fairly weak assumptions:

L(⋅, ⋅) need not be Lipschitz, strongly-convex, nor smooth in either argument, and we do not require

X ×Y to be a bounded domain.

7.3 Conclusions

In this chapter, we developed the őrst parameter-free guarantees for a setting in which both the do-

main and the losses may be unbounded. Our results generalize the standard parameter-free bounds,

and our lower bound demonstrates that the additional penalties incurred are unavoidable without

further assumptions. As an application of our results, we develop novel saddle-point optimization

algorithms which converge in duality gap even in unbounded decision sets. We obtain as a special

case parameter-free algorithms for bilinearly-coupled saddle-point problems, which capture many

problems of practical interest, such as minimizing the mean-squared projected bellman error for

off-policy policy evaluation in reinforcement learning.

52

Part III

Adapting to Non-stationarity

53

Chapter 8

Overview of Part III

Now that we’ve had a taste of how to use our techniques, in Part III of this thesis we turn to the

challenging problem of competing with an arbitrary sequence of comparators u ≙ (u1, . . . , uT), and

develop algorithms which adapt to the comparator sequence without tuning any hyperparameters.

Notably, these are the őrst algorithms in online learning that require absolutely no prior knowledge

about the comparator sequence.

To understand this claim, note that prior works which study dynamic regret only do so in

the bounded domain setting (Zinkevich 2003; T. Yang et al. 2016; Hall and Willett 2016; Gyorgy

and Szepesvari 2016; L. Zhang, S. Lu, and Z.-H. Zhou 2018); this amounts to having strong prior

knowledge of a radius D for which ∥ut −w1∥ ≤ D for all t. Alternatively, prior works which make

meaningful guarantees in unbounded domains (i.e. the standard parameter-free online learning

literature) only study static regret (Mcmahan and M. Streeter 2012; McMahan and Orabona 2014;

Orabona and Pál 2016; Cutkosky and Orabona 2018); this amounts amounts to the strong prior

knowledge that the comparator does not vary with time. In contrast, each of our results in this

part of the thesis hold regardless of how large maxt ∥ut −w1∥ may be and each result achieves

near-optimal performance against both őxed and time-varying comparators. In this sense, truly

nothing about the comparator sequence needs to be known a priori in order to implement these

algorithms or achieve their associated performance guarantees. Not only are these the őrst results

to fully remove prior knowledge of the comparator sequence in online learning, we are able to extend

these novelties outside the standard setting of Lipschitz losses, achieving optimal dynamic regret

guarantees in two settings in which both the domain and the losses are unbounded.

This part of the thesis is composed of two main chapters: In Chapter 9 we revisit the Lipschitz

losses and quadratically bounded losses problem settings from Part II. Then, in Chapter 10 we

consider the related problem setting of online linear regression.

54

Adapting to Non-stationarity with Lipschitz Losses. We begin with the Lipschitz loss

setting in Section 9.1. Our contributions in this setting are as follows:

• We develop an algorithm which guarantees dynamic regret

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M + PT) T∑

t≙1

∥gt∥2 ∥ut −w1∥⎞⎟⎠ ,
where M ≙ maxt ∥ut −w1∥ and PT ≙ ∑Tt≙2 ∥ut − ut−1∥. This result is the őrst non-trivial dy-

namic regret guarantee of any kind in unbounded domains, and the result matches the minimax

optimal guarantee from the bounded domain setting up to logarithmic terms. Our result also

naturally attains a new form of per-comparator adaptivity ∑Tt≙1 ∥gt∥2 ∥ut −w1∥, in which the

variance penalty ∥gt∥2 is removed on all rounds where our initial guess w1 matches the com-

parator ut. Even in bounded domains, prior works instead scale with the signiőcantly worse

maxx,y∈W ∥x − y∥∑Tt≙1 ∥gt∥2.
• We additionally provide two useful dynamic regret reductions. In Section 9.1.1, we show that

if one is willing to forego the per-comparator adaptivity above, O(√(M2 +MPT)∑Tt≙1 ∥gt∥2)
can be achieved using dynamic regret algorithms for bounded domains via a straight-forward

application of the 1-dimensional reduction of Cutkosky and Orabona (2018). This bound still

matches the minimax optimal guarantee from the bounded domain setting up to logarithmic

terms. Then, in Section 9.1.2, we provide a simple reduction which reduces the per-round

computation from O(d log (T)) down to O(d) on average, while still maintaining the optimal

Õ (√(M2 +MPT)∑Tt≙1 ∥gt∥2) guarantee up to poly-log terms.

Adapting to Non-stationarity with Unbounded Losses. Next, returning to the setting of

quadratically bounded losses in Section 9.2, we make the following contributions:

• We design an algorithm which guarantees dynamic regret

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

[G2
t +ML2

t]⎞⎟⎠ ,
where M ≙maxt ∥ut −w1∥, and Gt and Lt are constants satisfying ∥∇ℓt(w)∥ ≤ Gt +Lt ∥w∥ for

any ∇ℓt(w) ∈ ∂ℓt(w) and w ∈ W . When the losses are Lt-smooth, the bound automatically

improves to an L∗ bound of the form

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

Lt [ℓt(ut) − ℓ∗t ∥⎞⎟⎠ ,

55

where ℓ∗t ≙ minw ℓt(w). These are the őrst non-trivial dynamic regret guarantees to hold in

settings where both the domain and the losses can be unbounded.

• We provide a matching lower bound demonstrating that these results are unimprovable in

general.

Online Prediction in the Complete Absence of Prior Knowledge. Finally, in Chapter 10,

we turn our attention to the related problem setting of online linear regression. This is an online

learning problem with losses ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2, where yt ∈ R and xt ∈ R

d is a vector of features

which are observed at the beginning of the round. We develop the őrst algorithms for online linear

regression that require absolutely no prior knowledge about the data stream, yet still make strong

performance guarantees. In particular, our contributions are as follows:

• We show that even in the absence of any boundedness assumptions, a discounted variant of the

Vovk-Azoury-Warmuth (VAW) forecaster with a well-chosen discount factor achieves dynamic

regret RT (u1, . . . , uT) ≤ O(d log (T) ∨√dP γT (u)T), where P γT (u) is a measure of variability

of the comparator sequence (i.e. the magnitude of P γT (u) is related to how drastically the

comparator changes over time). We also obtain small-loss guarantees of the form RT (u) ≤
O(d log (T) ∨√dP γT (u)∑Tt≙1 ℓt(ut)), so that the algorithm will automatically perform better

on “easyž data where the comparator has low loss.

• We provide a matching lower bound of the form RT (u) ≥ Ω(d log (T) ∨√dTP γT (u)), demon-

strating optimality of the discounted VAW forecaster.

• We show that the discount factors required to obtain the results in the őrst point can be

learned on-the-ŕy, leading to algorithms that make guarantees matching our lower bound.

Moreover, we show how to extend our approach to achieve bounds of a similar form over every

sub-interval [a, b∥ ⊆ [1, T ∥ simultaneously. This is a signiőcantly stronger form of adaptivity

which has previously only been achieved in bounded domains with Lipschitz losses. Our results

are in fact the őrst strongly-adaptive guarantees to be achieved in the absence of boundedness

assumptions.

56

Chapter 9

Non-stationarity in Online Learning

In this chapter we develop parameter-free dynamic regret guarantees in both the Lipschitz and

quadratically bounded settings studied in Chapters 6 and 7. Our goal is to develop guarantees

which are fully adaptive to arbitrary comparator sequences, requiring no prior knowledge about the

magnitude or variability of the sequence, while still making near-optimal guarantees without any

hyperparameter tuning.

Prior works studying dynamic regret guarantees for general OCO assume both bounded domains

W and bounded subgradients (Lipschitz losses). In this chapter, we develop the őrst dynamic regret

guarantees for unbounded domains, under the standard Lipschitz assumption (Section 9.1). Our

algorithm guarantees RT (u) ≤ Õ(√(M2 +MPT)∑Tt≙1 ∥gt∥2), where M ≙ maxt ∥ut −w1∥, matching

the minimax optimal guarantee (Equation (3.4)) from the easier bounded domain setting up to

logarithmic terms. Then, in Section 9.2 we consider the (G,L)-quadratically bounded setting, in

which both the domain and the losses may be unbounded. We develop an algorithm guaranteeing

Õ(G√MPTT +LM
3/2√PTT) dynamic regret, and provide a lower bound showing that this result

is unimprovable without further assumptions.

9.1 Lipschitz Losses

We begin our study of dynamic regret guarantees in the G-Lipschitz loss setting. To get a feel

for what we should expect in this setting, let us recall the results from the simpler bounded do-

main setting, in which supx,y∈W ∥x − y∥ ≤ D. The minimax optimal dynamic regret in this setting

is RT (u) ≤ G√(D2 +DPT)T , where PT ≙ ∑Tt≙2 ∥ut − ut−1∥ is the path-length of the comparator

sequence (L. Zhang, S. Lu, and Z.-H. Zhou 2018). A matching guarantee can be made using an

“online hyperparameter tuningž argument. The idea is simple: vanilla gradient descent with a őxed

57

step-size η guarantees (see, e.g., Lemma 4.0.1)

RT (u) ≤ D2
+∑Tt≙2 ∥wt −w1∥ ∥ut−1 − ut∥

2η
+
η

2

T

∑
t≙1

∥gt∥2 ≤ D2
+DPT

2η
+
η

2

T

∑
t≙1

∥gt∥2
where gt ∈ ∂ℓt(wt), and the őnal inequality uses the bounded domain assumption to bound ∥wt −w1∥ ≤
D. Observe that the optimal η would be η∗ ≙

√
D2+DPT

∑
T
t≙1∥gt∥2 , which would yield regret which matches

the minimax optimal bound in the worst-case:

RT (u) ≤
¿ÁÁÀ(D2 +DPT) T∑

t≙1

∥gt∥2 ≤ G√(D2 +DPT)T .
The approach of L. Zhang, S. Lu, and Z.-H. Zhou (2018) is to simply run many instances of gradient

descent in parallel with different step-sizes, and combine their predictions using a mixture-of-experts

approach. In particular, let η1, . . . , ηN be a collection of step-sizes, and for each i ∈ [N∥, let Aηi
denote an instance of gradient descent with step-size ηi and let wηit denote the output ofAηi on round

t. Let AMeta denote an experts algorithm (e.g., Hedge) which outputs a distribution pt(η) over the

outputs {wηit }Ni≙1 on each round. On round t, we play wt ≙ ∑i∈[N∥ pt(ηi)wηit and observe gt ∈ ∂ℓt(wt).
Then, we update our predictions by passing gt to each of the Aηi as the tth subgradient, and passing

ℓ̃t ≙ (⟨gt,wη1t ⟩ , . . . , ⟨gt,wηNt ⟩)⊺ ∈ RN to AMeta as the tth loss vector. Using a geometrically spaced

grid of O(log (T)) different step-sizes, this approach allows one to guarantee the optimal dynamic

regret up to a log (log (T)) factor.

Now returning to the unconstrained setting, there are two places where the above argument will

fail. First, we can no longer bound ∥wt −w1∥ ≤D, and we will generally fail to produce meaningful

guarantees by naively bounding ∑Tt≙2 ∥wt −w1∥ ∥ut − ut−1∥ ≤ maxt ∥wt −w1∥PT since ∥wt −w1∥ can

be arbitrarily large in unbounded domains. Moreover, even if we could argue that this term is

bounded by some comparator-dependent quantity such as ∥wt −w1∥ ≤maxt ∥ut −w1∥, the mixture-

of-experts part of this argument will fail due to being passed losses of unknown scale. Indeed, the

loss vectors ℓ̃t passed will have components ⟨gt,wηit ⟩, which could be arbitrarily large.

Our approach will instead be to leverage properties of parameter-free guarantees to avoid these

difficulties. Using the tools developed in Chapter 4, we’ll őrst derive an algorithm which, for

any η ≤ 1
G

, guarantees RT (u) ≤ Õ(PT+maxt ∥ut∥
η

+ η∑Tt≙1 ∥gt∥2 ∥ut∥). The key observation is that this

bound has the property that RT (0) ≤ O(1) for any η, which will allow us to combine algorithms using

a simple iterate adding approach instead of relying on a mixture-of-experts approach (Cutkosky

2019b). Indeed, suppose we run an instance of this algorithm Aη for each η in some set S ≙{η ∈ R ∶ 0 < η ≤ 1
G
}, and on each round we play wt ≙ ∑η∈S wηt where wηt is the output of Aη. Then for

any arbitrary η̃ ∈ S, we can write ⟨gt,wt − ut⟩ ≙ ⟨gt,wη̃t − ut⟩+∑η≠η̃ ⟨gt,wηt ⟩, so the regret is bounded

58

Algorithm 8: Dynamic Regret Algorithm

1 Input: Lipschitz bound G, value ε > 0, step-sizes S ≙ { 2k

G
√
T
∧

1
G
∶ 1 ≤ k ≤ ⌈log2√T ⌉}

2 Initialize: ϵ ≙ ε∣S ∣ ≙ ε⌈log2(√T)⌉ , V1 ≙ 4G
2, wη1 ≙ 0 and θηt ≙ 0 for each η ∈ S

3 for t ≙ 1 ∶ T do
4 Play wt ≙ ∑η∈S wηt , receive subgradient gt

5 Update Vt+1 ≙ Vt + ∥gt∥2 and αt+1 ≙
ϵG2

Vt+1 log
2(Vt+1/G2)

6 for η ∈ S do

7 Set θηt ≙
2w

η
t log(∥wηt ∥/αt+1)

η∥wηt ∥ − gt (with θηt ≙ −gt if wηt ≙ 0)

8 Update wηt+1 ≙
αt+1θ

η
t∥θηt ∥ [exp [η2 max(∥θηt ∥ − 2η∥gt∥2,0)] − 1]

9 end

10 end

as

RT (u) ≤ T

∑
t≙1

⟨gt,wη̃t − ut⟩ +∑
η≠η̃

[T∑
t≙1

⟨gt,wηt ⟩] ≙ RAη̃T (u) +∑
η≠η̃

R
Aη
T (0) ≤ O(RAη̃T (u) + ∣S ∣).

Since this holds for an arbitrary η̃ ∈ S, it must hold for the η ∈ S for which R
η
T (u) is smallest,

so we need only ensure that there is some near-optimal η ∈ S, and that ∣S ∣ is not too large. The

latter condition is easily accomplished by setting S to be a geometrically-spaced grid such that∣S ∣ ≤ O(log (T)). The base algorithms Aη and their corresponding regret guarantee are given in the

following proposition.

Proposition 9.1.1. Let ℓ1, . . . , ℓT be G-Lipschitz convex functions and gt ∈ ∂ℓt(wt) for all t. Let

ϵ > 0, Vt ≙ 4G2
+ ∥g∥21∶t−1, αt ≙ ϵG2

Vt log
2(Vt/G2) , and set ψt(w) ≙ 2 ∫ ∥w∥0

log(x/αt+1)
η

dx and φt(w) ≙
2η ∥gt∥2 ∥w∥ . Then for any u1, . . . , uT in R

d, Algorithm 2 guarantees

RT (u) ≤ Ô⎛⎝ϵ +
(M + PT) [log (MT 2∥g∥2

1∶T

ϵG2 + 1) ∨ 1]
η

+ η
T

∑
t≙1

∥gt∥2 ∥ut∥⎞⎠,
where M ≙maxt ∥ut∥ and Ô(⋅) hides constant and log(log) factors.

The proof can be found in Appendix C.1.1, and again follows the intuition in Chapter 4: we őrst

apply Lemma 4.0.1 to get RT (u) ≤ ψT+1(uT)+∑Tt≙2Pt +∑Tt≙1φt(ut)+∑Tt≙1 δt. Unlike in Section 6.1,

the regularizer ψt generally does not grow fast enough for ∆t(w) ≙ ψt+1(w) − ψt(w) to ensure that

δt ≤ δ̂t. Instead, we include an additional composite regularizer φt in the update and show that this

now ensures δt ≤ δ̂t, so that by Lemma 4.0.2 we have δt ≤ δ̂t ≤
2∥gt∥2
Ψ′′t (0) ≤ 2ηαt ∥gt∥2. Then we choose αt

to be small enough to ensure that ∑Tt≙1 δt ≤ O(1). We also now need to control the additional terms

associated with the time-varying comparator, Pt ≙ ⟨∇ψt(wt), ut−1 − ut⟩. To handle these, we again

exploit φt: by increasing it slightly more, we can decrease δt enough to cancel out the part of Pt

which depends on ∥wt∥, so that this (unbounded!) quantity does not appear in the regret bound.

59

With this result in hand, we proceed to “tunež the optimal step-size by simply adding the iterates

of a collection of these simple learners Aη, as discussed above. The full algorithm is given in Algo-

rithm 8, and the overall regret guarantee is given in Theorem 9.1.2 (with proof in Appendix C.1.1).

Theorem 9.1.2. For any ε > 0 and u1, . . . , uT in R
d, Algorithm 8 guarantees

RT (u) ≤ Ô⎛⎝εG +
¿ÁÁÀ(M + PT) T∑

t≙1

∥gt∥2 ∥ut∥ log(MT 2 ∥g∥21∶T
εG2

+ 1) +GPT log(MT 2 ∥g∥21∶T
εG2

+ 1)⎞⎠
where M ≙maxt ∥ut∥ and Ô(⋅) hides constant and log(log) factors.

The bound achieved by Algorithm 8 is the őrst dynamic regret guarantee of any kind in un-

bounded domains. Further, Theorem 9.1.2 exhibits a stronger per-comparator adaptivity than pre-

viously obtained by depending on the individual comparators ∥ut∥, in contrast to the RT (u) ≤
Õ(√(M2 +MPT)∑Tt≙1 ∥gt∥2) rate attained by prior works in bounded domains (L. Zhang, S. Lu,

and Z.-H. Zhou 2018; Jadbabaie et al. 2015).

To see why this per-comparator adaptivity is interesting, let us consider a learning scenario

in which there is a nominal “defaultž decision u which we expect to perform well most of the

time, but may perform poorly during certain rare or unpredictable events. One example of such a

situation is when one has access to an batch of data collected offline, which we can leverage to őt

a parameterized model M(u) to the data to use as a baseline predictor. Deploying such a model

online can be dangerous in practice because there may be certain events that are poorly covered by

our dataset, leading to unpredictable behavior from the model. In this context, we can think of u as

the learned model parameters, and without loss of generality we can assume u ≙ 0 (since otherwise

we could just translate the decision space to be centered at u). In this context, Theorem 9.1.2

tells us that Algorithm 8 will accumulate no regret over any intervals where we would want to

compare performance against the baseline model, and over any intervals [a, b∥ where the model is a

poor comparison we are still guaranteed to accumulate no more than a Õ(√(M2 +MP[a,b∥) ∥g∥2a∶b)
penalty, where P[a,b∥ ≙ ∑bt≙a+1 ∥ut − ut−1∥ is the path-length of any other arbitrary sequence of

comparators over the interval [a, b∥.
The property in the preceeding discussion is similar to the notion of strong adaptivity in the

constrained setting, in which an algorithm guarantees the optimal static regret over all sub-intervals

of [1, T ∥ simultaneously (Daniely, Gonen, and Shalev-Shwartz 2015; Jun, Orabona, et al. 2017).

One might wonder if instead we should hope for the natural analog in the unconstrained setting:

R[a,b∥(u) ≙ ∑bt≙a⟨gt,wt − u⟩ ≤ Õ(∥u∥√b − a) for all [a, b∥. Unfortunately, this natural analog is likely

unattainable. To see why, notice that for all intervals [a, b∥ of some őxed length τ ≙ b− a, we would

require R[a,b∥(0) ≙ ∑bt≙a ⟨gt,wt⟩ ≤ O(1), suggesting that no wt can be larger than some őxed constant

(dependent on τ). Yet clearly for large enough T this cannot be guaranteed while simultaneously

guaranteeing RT (u) ≤ O(∥u∥G√T log (∥u∥GT)) for all u ∈ Rd, since via reward-regret duality this

60

entails competing against a őxed comparator u ∈ Rd with ∥u∥ ≙ O(exp (T) /√T) in the worst-case,

which can get arbitrarily large as T increases. For this reason, we consider Theorem 9.1.2 to be a

suitable relaxation of the strongly adaptive guarantee for unbounded domains.

9.1.1 A Simple Reduction for Dynamic Regret in Unbounded Domains

Interestingly, if one is willing to forego adaptivity to the individual ∥ut∥ observed in the previ-

ous section, it turns out that a dynamic regret bound of RT (u) ≤ Õ (√(M2 +MPT) ∥g∥21∶T) can

be achieved very simply using a generalization of the one-dimensional reduction of Cutkosky and

Orabona 2018 to dynamic regret. Note however, that this approach fails to achieve the improved

per-comparator adaptivity observed in Section 9.1. The following lemma shows that achieving the

RT (u) ≤ Õ (√(M2 +MPT) ∥g∥21∶T) bound in an unconstrained domain is essentially no harder

than achieving it in a bounded domain, so long as one has access to an algorithm guaranteeing

parameter-free static regret.

Algorithm 9: One-dimensional Reduction (Cutkosky and Orabona 2018)

1 Input: 1D online learning algorithm A1D, online learning algorithm AS with domain equal

to the unit-ball S ⊆ {x ∈ Rd ∶ ∥x∥ ≤ 1}
2 for t ≙ 1 ∶ T do
3 Get point xt ∈ S from AS
4 Get point βt ∈ R from A1D

5 Play point wt ≙ βtxt ∈ R
d, receive subgradient gt

6 Send ĝt ≙ ⟨gt, xt⟩ to A1D as the tth loss

7 Send gt to AS as the tth loss

8 end

Lemma 9.1.3. Suppose that AS guarantees dynamic regret RAST (u) for any sequence u1, . . . , uT in

the unit-ball S ≙ {w ∈ Rd ∶ ∥w∥ ≤ 1} and suppose A1D obtains static regret RA1D

T (u) for any u ∈ R.

Then for any u1, . . . , uT in R
d, Algorithm 9 guarantees

RT (u) ≙ RA1D

T (M) +MR
AS
T (uM)

where M ≙maxt≤T ∥ut∥.
Proof. the proof follows the same reasoning as in the static regret case (Cutkosky and Orabona

61

2018, Theorem 2):

RT (u) ≙ T

∑
t≙1

⟨gt,wt − ut⟩ ≙ T

∑
t≙1

⟨gt, βtxt − ut⟩
≙

T

∑
t≙1

⟨gt, xt⟩βt + [⟨gt, xt⟩M − ⟨gt, xt⟩M] − ⟨gt, ut⟩
≙

T

∑
t≙1

⟨gt, xt⟩βt − ⟨gt, xt⟩M + T

∑
t≙1

⟨gt, xt⟩M − ⟨gt, ut⟩
≙

T

∑
t≙1

ĝt(βt −M) +M T

∑
t≙1

⟨gt, xt − ut
M
⟩ ≙ RA1D

T (M) +MRT (u
M
)

Using this, one could let A1D be any parameter-free algorithm and let AS be any algorithm

which achieves the desired dynamic regret on a bounded domain. For instance, to get the optimal√
PT dependence we can choose AS to be the Ader algorithm of L. Zhang, S. Lu, and Z.-H. Zhou

(2018), which will guarantee MRAST (uM) ≤ O (MG
√
T (1 + PT

M
)) ≙ O (G√(M2 +MPT)T).

9.1.2 Amortized Computation for Dynamic Regret

All known algorithms which achieve the optimal O(√TPT) dynamic regret follow a similar con-

struction, in which several instances of a simple base algorithm A are run simultaneously and their

outputs combined in a way that guarantees dynamic regret approximately equal to an instance with

a near-optimal choice of step-size. Generally O(log (T)) instances of A are required to ensure that

one of them has a near-optimal choice of step-size. Assuming the base algorithm A uses O(d) com-

putation per round, the full algorithm then requires O(d log (T)) computation per round. Ideally

we’d like to avoid this log(T) overhead.

A simple way to combat this computational overhead is to only update the algorithm every

O(log (T)) rounds, so that the amortized computation per round is O(d) on average. The following

proposition shows that RT (u) ≤ O (√TPT) can be maintained up to poly-logarithmic terms using

only O(d) per-round computation on average by updating only at the end of itervals Ik of length

O (log (T)). Proof can be found in Appendix C.1.1.

62

Algorithm 10: Lazy Reduction for Amortized Computation

1 Input: Algorithm A, Disjoint intervals I1, . . . , IK such that ∪Kk≙1Ik ⊇ [1, T ∥
2 Get w1 from A
3 Set k ≙ 1
4 for t ≙ 1 ∶ T do
5 Play wt, observe loss gt
6 if t + 1 ∉ Ik then
7 Send g̃k ≙ ∑s∈Ik gs to A
8 Update k ← k + 1

9 Get wt+1 from A

10 else
11 Set wt+1 ≙ wt
12 end

13 end

Proposition 9.1.4. Suppose A is an online learning algorithm which guarantees

RAT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

∥gt∥2⎞⎟⎠ ,
for all u1, . . . , uT in R

d with maxt≤T ∥ut∥ ≤M . Then for all u1, . . . , uT in R
d, Algorithm 10 guaran-

tees

RT (u) ≤ Õ (max
k≤K
∣Ik∣√(M2 +MPT) ∥g∥21∶T)

9.2 Unbounded Losses

In this section, we return to the quadratically bounded losses setting introduced in Chapter 7. Here

we consider in particular the QB-OCO setting, in which the losses satisfy ∥∇ℓt(w)∥ ≤ Gt + Lt ∥w∥
for some 0 ≤ Gt ≤ Gmax and 0 ≤ Lt ≤ Lmax, rather than the more difficult QB-OLO setting. In

contrast to previous sections, in this section we consider full-information feedback, in which the

learner observes the function ℓt(⋅) (as opposed to őrst-order feedback ∇ℓt(wt) ∈ ∂ℓt(wt)).
In the static regret setting, we saw in Section 7.1 that to control the stability of the algorithm

it was necessary to add an additional term Φt(w) ≙ O (Lmax

√
T ∥w∥2) to the regularizer to help

control the “non-Lipschitzž part of the loss. We will likewise need a stronger regularizer to control

the gradients for dynamic regret, but now it will lead to new difficulties. To see why, consider the

dynamic regret of gradient descent with a őxed step-size η. The regret can be bound (e.g. using

63

Lemma 4.0.1) as

RT (u) ≤ O (∥uT ∥2 +maxt ∥wt∥PT
2η

+
η

2

T

∑
t≙1

∥gt∥2) , (9.1)

where gt ∈ ∂ℓt(wt) and PT ≙ ∑Tt≙2 ∥ut − ut−1∥. In a bounded domain of diameter D, we can bound∥uT ∥2 ≤D2 and maxt ∥wt∥ ≤D, and then by optimally tuning η we get

RT (u) ≤ O(
¿ÁÁÀ(D2 +DPT) T∑

t≙1

∥gt∥2)
which is optimal in the Lipschitz loss setting (L. Zhang, S. Lu, and Z.-H. Zhou 2018). More generally,

using Mirror Descent with regularizer ψ(w), one can derive an analogous bound:

RT (u) ≤ O (ψ(uT) +max
t
∥∇ψ(wt)∥PT + T

∑
t≙1

δt) ,
where δt are the stability terms discussed in Section 7.1. In an unbounded domain, in Chapter 7 we

used a regularizer of the form ψ(w) ≙ O (∥w∥ log (∥w∥T) /η), which enabled us to bound ∑Tt≙1 δt ≤
O(η), and moreover, we showed that maxt ∥∇ψt(wt)∥ can be bound from above by O (log (MT /ϵ) /η)
after adding a composite penalty φt(w) ≙ η ∥gt∥2 ∥w∥ to the update. Then optimally tuning η lead

to regret scaling as

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

∥gt∥2⎞⎟⎠ , (9.2)

where M ≙maxt ∥ut∥, which matches the bound from the bounded-domain setting up to logarithmic

terms.

In the quadratically bounded setting, the situation gets signiőcantly more challenging. As

in Section 7.1, we will need to include an O(∥w∥2 /η) term in the regularizer ψt in order to

control the “non-Lipschitzž part of the loss function. However, as above this leads to coupling

maxt ∥∇ψt(wt)∥Pt ≙maxt ∥wt∥PT /η in the dynamic regret, and the term maxt ∥wt∥ is generally too

large to cancel out with additional regularization as done in Chapter 7. Even more troubling is

that our lower bound in Theorem 9.2.2 suggests that the ideal dependence would be O(MPT /η),
which we can only hope to achieve by constraining ∥wt∥ to a ball of diameter proportional to

M ≙maxt ∥ut∥. Yet M is unknown to the learner!

Luckily, hope is not all lost. Taking inspiration from Luo, M. Zhang, et al. (2022), we can still

attain a bound similar to Equation (9.2) by tuning the diameter of an artiőcial domain constraint.

The approach is as follows: for each (η,D) in some set S, we run an instance of gradient descent

64

Algorithm 11: Dynamic Regret Algorithm

1 Input: Gmax, Lmax, weights β1, . . . , βT in [0,1∥, hyperparameter set

S ≙ {(η,D) ∶ η ≤ 1
8Lmax

,D > 0}, p1 ∈∆∣S ∣.
2 for τ ≙ (η,D) ∈ S do

3 Initialize: w
(τ)
1 ≙ 0, q1(τ) ≙ p1(τ)

4 Deőne µτ ≙
1

2D(Gmax+D/η)
5 Deőne ψτ(x) ≙ 9

2µτ ∫
x
0 log (v)dv

6 end
7 for t ≙ 1 ∶ T do

8 Play wt ≙ ∑τ∈S pt(τ)w(τ)t , observe loss ℓt ∶W → R

9 Choose any reference point w̃t ∈W s.t. ∥w̃t∥ ≤Dmin

10 for τ ≙ (η,D) ∈ S do

11 Query g
(τ)
t ∈ ∂ℓt(w(τ)t)

12 Set w
(τ)
t+1 ≙ Π{w∈W ∶∥w∥≤D}(w(τ)t − η(1 + 8ηLt)g(τ)t)

13 Deőne ℓ̃t,τ ≙ ℓt(w(τ)t) − ℓt(w̃t)
14 end

15 Set qt+1 ≙ argmin
q∈∆∣S∣

∑
τ∈S
(ℓ̃tτ + µτ ℓ̃2tτ)qτ +Dψτ (qτ ∣ptτ)

16 Set pt+1 ≙ (1 − βt)qt+1 + βtp1.
17 end

A(η,D) which uses step-size η and projects to the set WD ≙ {w ∈W ∶ ∥w∥ ≤D}. Then, using a

carefully designed experts algorithm, it is possible to ensure that the overall regret of the algorithm

scales roughly as RT (u) ≤ Õ (RA(η,D)T (u)) for any (η,D) ∈ S. Thus if we can ensure that there is

some (η,D) ∈ S for which D ≈M and η is near-optimal, then we’ll be able to achieve dynamic regret

with the desired MPT dependence. The following theorem, proven in Appendix C.1.2, characterizes

an algorithm which achieves dynamic regret analogous to the above bounds, and in Theorem 9.2.2

we show that this is indeed unimprovable. Notably, our result also automatically improves to a

novel L∗ bound when the losses are smooth.

65

Theorem 9.2.1. For all t let ℓt ∶W → R be a (Gt, Lt)-quadratically bounded convex function with

Gt ∈ [0,Gmax∥ and Lt ∈ [0, Lmax∥. Let ϵ > 0, βt ≤ 1 − exp (−1/T) for all t, and for any i, j ≥ 0

let Dj ≙
ϵ
T
[2j ∧ 2T] and ηi ≙ [ϵ2i

8(Gmax+ϵLmax)T ∧ 1
8Lmax

], and let S ≙ {(ηi,Dj) ∶ i, j ≥ 0}. For each

τ ≙ (η,D) ∈ S let µτ ≙
1

2D(Gmax+D/η) and set p1(τ) ≙ µ2τ
∑τ̃∈S µ

2

τ̃

. Then for any u ≙ (u1, . . . , uT) in W ,

Algorithm 11 guarantees

RT (u)≤O⎛⎝[(M + ϵ)Λ∗T + PT ∥Gmax +

√(M2Λ∗T +MPT)LT⎞⎠.
where Λ∗T ≤ O (log (MT log(T)

ϵ
) + log (log (Gmax

ϵLmax
))), Gmax ≙ Gmax +MLmax, LT ≤ ∑Tt≙1 [G2

t +ML2
t],

PT ≙ ∑Tt≙2 ∥ut − ut−1∥, and M ≙ maxt ∥ut∥. Moreover, when the losses are Lt-smooth, the terms LT

automatically improve to

LT ≤min{ T∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥ , T∑
t≙1

[G2
t +ML2

t]}
Hiding constants and logarithmic terms, the őrst bound is effectively

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

G2
t +L

2
tM

2
⎞⎟⎠ .

Notice that our result again generalizes the bounds established in prior works. Unfortunately, the

result is not a strict generalization as Theorem 9.2.1 requires Lmax > 0 for the hyperparameter set

S to be őnite. To achieve a strict generalization, one can simply deőne a procedure which runs the

algorithm Theorem 9.1.2 when Lmax ≙ 0 and Algorithm 11 otherwise; this is possible because Lmax

must be provided as input to the algorithm. Notably, the algorithm of Section 9.1 does not use

the aforementioned domain tuning trick and requires signiőcantly less per-round computation as a

result (O(d log (T)) vs. O(dT log (T))). We leave open the question of whether the exists a unifying

analysis for Lmax ≙ 0 and Lmax > 0, and whether the per-round computation can be improved.

As in Section 7.1, we again observe an additional penalty associated with non-Lipschitzness,

this time on the order of Õ (M3/2√(M + PT)∑Tt≙1L2
t). The following theorem shows that these

penalties are unavoidable in general (proof in Appendix C.1).

Theorem 9.2.2. For any M > 0 there is a sequence of (G,L)-quadratically bounded functions with
G
L
≤M such that for any γ ∈ [0, 1

2
∥,

RT (u) ≥ Ω (GM1−γ [PTT ∥γ +LM2−γ [PTT ∥γ) .
where PT ≙ ∑Tt≙2 ∥ut − ut−1∥ and M ≥maxt ∥ut∥.

Notice that with γ ≙ 1
2
, we have RT (u) ≥ Ω (G√MPTT +LM

3/2√PTT), matching our upper

66

bound in Theorem 9.2.1 up to logarithmic terms. On the otherhand, for γ ≙ 0 we have RT (u) ≥
GM + LM2, suggesting that the lower-order leading terms of our upper bound are also necessary.

We also note that the assumption G/L ≤M is without loss of generality: when G/L ≥M one can

construct a sequence of (G+LM)-Lipschitz losses according to existing lower bounds to show that

RT (u) ≥ Ω ((G +LM)√MPTT) ≙ Ω (G√MPTT +LM
3/2√PTT) .

Interestingly, when the losses are smooth, the bound in Theorem 9.2.1 has the appealing property

that it automatically improves to an L∗ bound of the form

RT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

Lt [ℓt(ut) − ℓ∗t ∥⎞⎟⎠ ,
which matches bounds established in the Lipschitz and bounded domain setting up to logarithmic

penalties (Zhao et al. 2020). This is the őrst L∗ bound that we are aware of to be achieved in an un-

bounded domain for general smooth losses without a Lipschitz or bounded-range assumption. More-

over, our bound features improved adaptivity to the individial Lt’s, scaling as ∑Tt≙1Lt [ℓt(ut) − ℓ∗t ∥
instead of the usual Lmax∑Tt≙1 ℓt(ut) − ℓ∗t achieved by prior works (Srebro, Sridharan, and Tewari

2010; Orabona, Nicolo Cesa-Bianchi, and Gentile 2012; Zhao et al. 2020).

On the other hand, our upper bound bound contains terms of the form Gmax

Lmaxϵ
. Such ratios

are unappealing in general because Gmax and Lmax are not under our control Ð it’s possible for

this ratio to be arbitrarily large. Fortunately, this ratio only shows up only in doubly-logarithmic

terms, and hence these penalties can be regarded as effectively constant as far as the regret bound

is concerned.

A more pressing issue is that the ratio Gmax

ϵLmax
shows up in the number of experts. That is, setting

S as in Theorem 9.2.1 requires a collection of O(T log2(√T) + T log2 (Gmax/Lmaxϵ)) experts, so in

practice we can only tolerate Gmax/Lmaxϵ ≤ poly(T) without increasing the (already quite high!)

order of computation. We note that any algorithm that guarantees RT (0) ≤ Gmaxϵ cannot hope

to ensure non-vacuous regret when Gmax/Lmaxϵ > T anyways, so this seems to be a fundamental

restriction in this setting. Nevertheless, the following result shows that if we know a priori that

the losses will be smooth, then we can avoid this log (log (Gmax

Lmaxϵ
)) penalty entirely and reduce

the number of experts to T log2(√T) by instead setting ηmin ∝
1

Lmax

√
T

. Proof can be found in

Appendix C.1.2.

67

Theorem 9.2.3. For all t let ℓt ∶ W → R be (Gt, Lt)-quadratically bounded and Lt-smooth convex

function with Gt ∈ [0,Gmax∥ and Lt ∈ [0, Lmax∥. Let ϵ > 0 and for any i, j ≥ 0 let Dj ≙
ϵ√
T
[2j ∧ 2T]

and ηi ≙
1

8Lmax

√
T
[2i ∧√T], and let S ≙ {(ηi,Dj) ∶ i, j ≥ 0}. Then for any u ≙ (u1, . . . , uT) in W ,

Algorithm 11 guarantees

RT (u)≤O⎛⎝(M + ϵ)(LmaxPT +GmaxΛ
∗

T) +
¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2

+

¿ÁÁÀ(M2Λ∗T +MPT) T∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥⎞⎠,

where Λ∗T ≤ O (log(M√T log(√T)
ϵ

)), Gmax ≙ Gmax + MLmax, M ≙ maxt ∥ut∥, and PT ≙

∑Tt≙2 ∥ut − ut−1∥.
9.3 Conclusions

In this chapter, we developed parameter-free algorithms for dynamic regret. Our results in Sec-

tion 9.1 are the őrst dynamic regret guarantees of any kind for unbounded domains, and likewise

our results in Section 9.2 are the őrst for unbounded domains and losses. In both cases, our results

automatically obtain near-optimal guarantees in both stationary and non-stationary settings using

no instance-speciőc hyperparameter tuning, and require no prior knowledge of the magnitude of the

comparator sequence. Thus, our algorithms are the őrst to completely remove a priori knowledge

of the comparator sequence in general OCO.

An important open question is whether it is possible to reduce the computational or memory

overhead of the algorithms designed here. All known algorithms which obtain an O(√PTT) depen-

dence, including our own, require at least O(d log (T)) per-round computation and memory. This

sort of horizon-dependent complexity can be prohibitively expensive for many settings in which

one is concerned with adapting to non-stationarity, such as in continual learning settings. It may

be possible to construct the set of step-sizes in a more on-the-ŕy manner, beginning with a small

number of step-sizes and selectively adding more based on some empirical measure of performance.

This way it may be possible to be both dynamic and efficient in most problems, and computation-

ally expensive only in unreasonably hard problems. We leave these as exciting directions for future

investigation.

68

Chapter 10

Non-stationarity in Online Linear

Regression

This chapter presents new techniques and analyses for online linear regression, a variant of the classic

least-squares regression problem tailored to streaming data (Azoury and Manfred K Warmuth 2001;

Vovk 2001; Orabona, Crammer, and Nicolò Cesa-Bianchi 2015; Foster, Kale, and Karloff 2016).

Formally, consider T rounds of interaction between a learner and an environment, in which learner’s

objective is to accurately predict some observable target signal yt ∈ R before it’s revealed. On each

round, a vector of features xt ∈ R
d is őrst revealed, representing the context of the environment at

the start of the round, and the learner predicts ŷt ≙ ⟨xt,wt⟩ by means of a weight vector wt ∈ R
d.

The signal yt ∈ R
d is then observed, and the learner incurs a loss proportional to the prediction

error, ℓt(wt) ≙ 1
2
(yt − ⟨xt,wt⟩)2. Since wt is allowed to depend on xt, this protocol is sometimes

referred to as improper online regression, as the learner is able to make predictions outside of the

class of linear models. Indeed, since xt is revealed before the learner must make their prediction, it

is always possible to make predictions ŷt ≙ ft(xt) for any arbitrary transformation ft ∶ R
d
→ R, for

instance by setting wt ≙ ft(xt)xt/ ∥xt∥2.
As in previous chapters, the classical measure of the learner’s performance in this setting is

regret, the cumulative prediction error relative to some őxed benchmark point u ∈ Rd:

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(u).
Notice that this performance measure can only properly reŕect prediction accuracy when there

exists a őxed u ∈ Rd which predicts well on average. For example, this may occur when when the(xt, yt) pairs are all generated i.i.d. from some well-behaved distribution. However, in many true

streaming settings the data-generating distribution may change over time due to changes in the

69

environment. Dynamic regret attempts to model such settings by comparing against a sequence of

comparators u ≙ (u1, . . . , uT):
RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut).
Notice that dynamic regret captures the usual notion of regret (referred to as static regret) as a

special case by setting u1 ≙ . . . ≙ uT . Our goal in this chapter is to make favorable dynamic regret

guarantees even in the complete absence of any prior knowledge of the underlying data-generating

process. Naturally, because such an algorithm leverages no prior knowledge, it necessarily must be

adaptive to all problem-dependent quantities without requiring any instance-speciőc hyperparame-

ter tuning.

Related Works. Despite being a well-studied problem setting, there are no prior works

which approach online linear regression with sufficient generality to be considered free from prior

knowledge. The closest works to our own are Vovk (2001), Azoury and Manfred K Warmuth (2001),

Orabona, Crammer, and Nicolò Cesa-Bianchi (2015), and Mayo, Hadiji, and Erven (2022), each of

which consider the same improper online learning setting as this work and present algorithms that

can be run in an unbounded domain (hence requiring no prior knowledge about the comparator)

and without any prior knowledge of the data stream. Yet these works provide guarantees that only

hold for static regretÐthe dynamic regret of the algorithms in these works may be arbitrarily bad.

In this sense, deploying any such algorithm implicitly requires rather strong prior knowledge: that

the data-generating distribution is not changing over time.

A closely related problem setting which does account for potential non-stationarity is the classic

őltering problem (Kalman 1960; Simon 2006; Kozdoba et al. 2019; Hazan and Singh 2022). This

problem setting assumes that the yt are generated from a dynamical system of a speciőc form, and

seeks to estimate the hidden state of the system. Thus, these works revolve around strong structural

assumptions about the data-generating process from the outset. Similarly, there is a large literature

on adaptive őltering which seeks to solve the őltering problem without a priori knowledge of the

system (J. Kivinen, M. Warmuth, and Hassibi 2006; Hazan, Singh, and C. Zhang 2017; Hazan,

Lee, et al. 2018; Rashidinejad, Jiao, and Russell 2020; Tsiamis and Pappas 2022; Ghai et al. 2020),

though these works still implicitly require prior knowledge that the underlying dynamical system is

from some speciőc class, as any performance guarantees may otherwise fail to hold.

Alternatively, there are several related problem settings that one might hope to leverage results

from, but these all inevitably require additional assumptions of some form to be applied to the

online linear regression problem. For instance, many prior works develop algorithms for general

online regression settings that capture linear regression as a special case (Orabona, Crammer, and

Nicolò Cesa-Bianchi 2015; Luo, Agarwal, et al. 2016; Kotłowski 2017; Kempka, Kotlowski, and

70

Manfred K. Warmuth 2019; Mhammedi and Koolen 2020). Even more generally, one might hope

to approach online linear regression via reduction to a more general online convex optimization

setting (L. Zhang, S. Lu, and Z.-H. Zhou 2018; Yuan and Lamperski 2019; Zhao et al. 2020; Baby,

Hasson, and Y. Wang 2021; Baby and Y.-X. Wang 2021; Luo, M. Zhang, et al. 2022; Jacobsen and

Cutkosky 2022; Z. Zhang, Cutkosky, and Y. Paschalidis 2023; Zhao et al. 2024). Unfortunately, all of

these works require additional boundedness assumptions on the losses such as Lipschitzness or exp-

concavity, both of which require a bounded domain in the context of losses ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2.

Yet assuming a bounded domain amounts amounts to having strong prior knowledge that the

comparator sequence u ≙ (u1, . . . , uT) lies entirely within some bounded subset W ⊂ R
d, which

must be known and accounted for a priori for the guarantees to hold.

One recent exception to the limitations mentioned above is our contribution in the previous

section, Section 9.2. Recall that in that section, we developed algorithms which can be applied

to any loss functions satisfying ∥∇ℓt(w)∥ ≤ Gt + Lt ∥w∥ for some non-negative constants Gt and

Lt, and hence could be applied in the improper online regression setting by setting Gt ≙ ∣yt∣ ∥xt∥
and Lt ≙ ∥xt∥2. The algorithm in that section achieves a dynamic regret guarantee on the order

of O(M3/2√PTT) where M ≙ maxt ∥ut∥ and PT ≙ ∑Tt≙2 ∥ut − ut−1∥. However, the approach still

requires prior knowledge of Gmax ≥ Gt and Lmax ≥ Lt for all t (and hence is not prior-knowledge-free),

and later in this chapter we provide a lower bound demonstrating that the M3/2√T dependence

is overly pessimistic in the improper online regression setting. Moreover the algorithm from that

section requires O(dT log (T)) per-round computation, making it inappropriate for many of the long-

running problems where non-stationarity naturally emerges due to subtle changes in the environment

over time.

10.1 The Vovk-Azoury-Warmuth Forecaster

In the context of static regret, it is well known that the optimal strategy in our improper online

linear regression setting is the Vovk-Azoury-Warmuth (VAW) forecaster, discovered independently

by Azoury and Manfred K Warmuth (2001) and Vovk (2001). On each round, the standard VAW

forecaster sets

wt ≙ (λI + t

∑
s≙1

xsx
⊺

s)
−1 t−1

∑
s≙1

ysxs. (10.1)

The VAW forecaster is well-known for the following regret guarantee (Azoury and Manfred K

Warmuth 2001; Vovk 2001; Orabona, Crammer, and Nicolò Cesa-Bianchi 2015).

71

Theorem 10.1.1. For any u ∈ Rd and any sequences (yt)Tt≙1 in R and (xt)Tt≙1 in R
d, the VAW

forecaster guarantees

RT (u) ≤ λ
2
∥u∥22 + dmaxt y

2
t

2
log(1 + ∑Tt≙1 ∥xt∥22

λd
) ,

Let us brieŕy pause to appreciate some of the subtleties of this result, as it represents a very high

standard of excellence in online learning. First, note that the result holds using no prior knowledge

about the data Ð there are no underlying assumptions about how the features xt or the targets yt

are distributed, the algorithm requires no speciőc statistics or bounds such as ∣yt∣ ≤ Y or ∥xt∥ ≤ X,

and the algorithm works in an unbounded domain Ð a relative rarity in adversarial settings. Yet

despite this incredible degree of generality, the VAW forecaster boasts a strong logarithmic regret

guarantee, which can be shown to be optimal up to constant factors (See, e.g., Nicolo Cesa-Bianchi

and Lugosi (2006, Theorem 11.9)). Thus, the VAW forecaster achieves a harmony between theory

and practice which is quite rare in online learning, requiring no problem-speciőc information or

assumptions while still guaranteeing optimal regret.

However, a major caveat to the above discussion is that these favorable properties hold only

within the context of static regret. The dynamic regret of the VAW forecaster can be arbitrarily

bad in general. To see why, let us consider the simple case where d ≙ 1 and xt ≙ 1 for all t. In this

case, the VAW forecaster predicts ŷt ≙ xtwt ≙ (λ + t)−1∑t−1s≙1 ys, which approximates an empirical

average of the targets observed up to round t. It is easy to see that any such prediction strategy

can fail when competing with a time-varying comparator. For instance, if the őrst T /2 targets are

−1 but the second half are +1, the VAW forecaster will quickly converge to predicting −1 in the őrst

T /2 rounds, but will be unable to quickly adapt after the change in the latter T /2 rounds, leading

to linear regret overall. In this sense, the VAW forecaster actually implicitly requires quite strong

prior knowledge about the data: that it is, in some sense, stationary. Because of this, its predictions

can not be trusted in the absence of prior knowledge, but rather only when the practitioner knows

they are dealing with data that can be reasonably predicted using only a single őxed hypothesis

u ∈ Rd. In the next section, we will see that this issue can be alleviated by incorporating a suitable

recency bias to the statistics of the VAW forecaster.

10.2 Dynamic Regret via Discounting

Despite making strong static regret guarantees, we saw in the previous section that the standard

VAW forecaster may fail to attain low regret when competing against a time-varying comparator.

Loosely speaking, the problem is that the VAW forecaster treats all time-steps as equally important.

72

Indeed, it can be shown that VAW forecaster can be understood as updating

wt ≙ argminw∈Rd
1

2
∥w∥2Λt + t−1∑

s≙1

ℓs(w),
where Λt ≙ λI + xtx

⊺

t .
1 The latter term ∑t−1s≙1 ℓs(w) forces the VAW forecaster to choose a w which

balances all of the losses encountered so-far. Yet in dynamic scenarios, the losses that contain the

most-relevant information for predicting yt are typically the ones that have been observed the most

recently. In order to more closely track these recently-observed losses, we make two modiőcations

to the VAW forecaster. First, we incorporate a forgetting or discount factor γ in to the algorithm’s

statistics, placing less emphasis on losses observed far in the past. Second, we allow the update to

additionally make use of a sequence of “predicted labelsž or “hintsž ỹt that are available before we

commit to ŷt. Intuitively, we would like our algorithm to do better when ỹt ≙ yt. Later, we will

provide some concrete ways to set ỹt that yield strong regret bounds.

The variant of the VAW forecaster described above is provided concretely in Algorithm 12.

Observe that by unrolling the recursions for θt and Σt, the update wt ≙ Σ−1t [ỹtxt + γθt∥ can be

written in closed-form as

wt ≙ (γtλI + t

∑
s≙1

γt−sxsx
⊺

s)
−1 [ỹtxt + γ t−1∑

s≙1

γt−1−sysxs] .
By setting γ ≙ 1 and ỹt ≙ 0, the update precisely reduces to Equation (10.1), so the discounted

VAW forecaster is a strict generalization of the standard VAW forecaster. Likewise, the following

theorem shows that Algorithm 12 obtains a regret guarantee which captures Theorem 10.1.1 as a

special case. Proof can be found in Appendix C.2.1.

Theorem 10.2.1. Let λ > 0 and γ ∈ (0,1∥. Then for any sequence u ≙ (u1, . . . , uT) in R
d, Algo-

rithm 12 guarantees

RT (u) ≤ γλ
2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + d2 log (1/γ) T∑
t≙1

(yt − ỹt)2
where F γt (w) ≙ γt λ2 ∥w∥22 +∑ts≙1 γt−sℓs(w).

The regret decomposition obtained in Theorem 10.2.1 is appealing for two reasons. First, it

captures Theorem 10.1.1 as a special case: setting γ ≙ 1, ỹt ≙ 0, and u1 ≙ . . . ≙ uT ≙ u, the last two

1The equivalence to Equation (10.1) is readily checked via the őrst-order optimality condition, though this claim
can also be derived as a special case of a more general claim Proposition C.2.1 provided in the appendix.

73

Algorithm 12: Discounted VAW Forecaster

1 Input: λ > 0, γ ∈ (0,1∥
2 Initialize: w1 ≙ 0, Σ0 ≙ λI, θ1 ≙ 0
3 for t ≙ 1 ∶ T do

4 Receive features xt ∈ R
d

5 Set Σt ≙ xtx
⊺

t + γΣt−1, choose ỹt ∈ R
6 Update wt ≙ Σ

−1
t [ỹtxt + γθt∥

7

8 Predict ⟨xt,wt⟩ and observe yt
9 Incur loss ℓt(wt) ≙ 1

2
(yt − ⟨xt,wt⟩)2

10 Set θt+1 ≙ ytxt + γθt
11 end

terms of the bound evaluate to zero, so the regret is bounded by λ
2
∥u∥22+ d2 maxt y

2
t log (1 + ∑Tt≙1∥xt∥22λd

) ,
which is precisely the guarantee promised by Theorem 10.1.1. Second, the decomposition displays a

clean separation of concerns. The terms in the őrst line are the unavoidable penalties associated with

static regret, which are of course also unavoidable here in the more general dynamic regret setting.

In the second line, any penalties incurred as a result of a changing comparator sequence are captured

entirely by the variability term γ∑Tt≙1 F γt (ut+1)−F γt (ut), while the term d log (1/γ)∑Tt≙1 1
2
(yt − ỹt)2

represents a stability penalty incurred due to discounting.

Intuitively, the terms in the second line represent a tracking/stability trade-off: against a

volatile comparator sequence, we would ideally like to set the discount factor γ to be small to

control the variability penalty, yet this will come at the expense of increasing the stability penalty

d log (1/γ)∑Tt≙1 1
2
(yt − ỹt)2. In its current form, however, this trade-off is still a bit mysterious. The

variability term γ∑T−1t≙1 F
γ
t (ut+1) − F γt (ut) is not necessarily monotonic as a function of γ nor is it

necessarily positive, making it difficult to meaningfully analyze or understand how it relates to the

stability penalty d
2
log (1/γ)∑Tt≙1(yt − ỹt)2. If we instead consider a modest upper bound on these

terms we can reveal a more explicit trade-off. We provide proof of a slightly more general statement

of the following lemma in Appendix C.2.1.

Lemma 10.2.2. (simpliőed) Let ℓ0, ℓ1, . . . , ℓT be arbitrary non-negative functions, γ ∈ (0,1), and

F
γ
t (w) ≙ ∑ts≙0 γt−sℓs(w). For all t, deőne

d̄
γ
t (u, v) ≙ t

∑
s≙0

γt−s

∑ts′≙0 γt−s′
[ℓs(u) − ℓs(v)∥+

and P γT (u) ≙ ∑T−1t≙1 d̄
γ
t (ut+1, ut). Then for any VT ≥ 0,

γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + log (1γ)VT ≤ γ

1 − γ
P
γ
T (u) + 1 − γ

γ
VT

74

The lemma bounds the variability term γ∑T−1t≙1 [F γt (ut+1) − F γt (ut)∥ from Theorem 10.2.1 in

terms of a new one P γT (u). To understand this new measure of variability, for each t let us őrst

deőne a γ-exponentially-decaying distribution over time-steps s ≤ t as pγt (s) ≙ γt−s

∑
t
s′≙0

γt−s
′ . Then,

given γ we can express P γT (u) as

P
γ
T (u) ≙ T−1∑

t≙1

d̄
γ
t (ut+1,ut)³¹¹¹·¹¹¹µ

t

∑
s≙0

p
γ
t (s)[ℓs(ut+1) − ℓs(ut)∥+

≙

T−1

∑
t≙1

Es∼p
γ
t
[(ℓs(ut+1) − ℓs(ut))+],

so each term of P γT (u) is a measure of how different the prediction errors of ut and ut+1 are on

average across “recentž losses. The quantity P γT (u) can also be naively related to the more common

measure of variability Ð the path-length P
∥⋅∥
T ≙ ∑T−1t≙1 ∥ut − ut+1∥ Ð as follows:

P
γ
T (u) ≤ T−1∑

t≙1

max
s
∥∇ℓs(ut+1)∥∥ut − ut+1∥

≤max
t,s
∥∇ℓs(ut)∥P ∥⋅∥T ≤ O (max

t
∥ut∥P ∥⋅∥T) .

Thus, P γT (u) is proportional to the usual path-length. Note that a multiplicative penalty of

maxt ∥ut∥ is the same worst-case penalty that appears in prior works, even in bounded domains

(L. Zhang, S. Lu, and Z.-H. Zhou 2018; Jacobsen and Cutkosky 2022; Z. Zhang, Cutkosky, and

Y. Paschalidis 2023; Zhao et al. 2024).

Letting η ≙ γ
1−γ

, Lemma 10.2.2 tells us that that latter terms of Theorem 10.2.1 are bounded by

ηP
γ
T (u) + d

2η

T

∑
t≙1

(yt − ỹt)2,

a trade-off which can be optimized by choosing η ≙

√
d
2
∑
T
t≙1(yt−ỹt)2
P
γ
T
(u) to get

ηP
γ
T (u) + d

2η

T

∑
t≙1

(yt − ỹt)2 ≙ 2
¿ÁÁÀdP

γ
T (u) T∑

t≙1

1

2
(yt − ỹt)2.

This is very promising; as we will see in Section 10.2.2, a penalty of this form is unavoidable in

general. Plugging this choice of η back into η ≙ γ
1−γ

and solving for γ, we őnd that the ideal choice

of discount factor would be a γ ∈ [0,1∥ satisfying

75

γ ≙

√
d
2 ∑Tt≙1(yt − ỹt)2√

d
2 ∑Tt≙1(yt − ỹt)2 +√P γT (u) .

Notice in particular that γ appears on both sides of the expression, and solving for this γ explicitly

is non-trivial in general. Nonetheless, the following theorem shows that a discount factor satisfying

the above expression always exists, and if it could somehow be provided to the discounted VAW

forecaster we would achieve dynamic regret matching the lower bound in Section 10.2.2. Proof can

be found in Appendix C.2.1.

Theorem 10.2.3. For any sequences y1, . . . , yT and ỹ1, . . . , ỹT in R and any sequence u ≙ (u1, . . . , uT)
in R

d, there is a discount factor γ∗ ∈ [0,1∥ satisfying

γ∗ ≙

√
d
2 ∑Tt≙1(yt − ỹt)2√

d
2 ∑Tt≙1(yt − ỹt)2 +√P γ∗T (u)

(10.2)

with which the regret of Algorithm 12 is bounded above by

RT (u) ≤ O(dmax
t
(yt − ỹt)2 log (T) +

¿ÁÁÀdP
γ∗

T (u) T∑
t≙1

(yt − ỹt)2)
While this result is promising, it is important to note that it still falls short of our desired goal of

prior-knowledge-free learning. Indeed, it seems that we require exceptionally strong prior knowledge

to choose the prescribed discount factor γ∗ satisfying Equation (10.2). We will return to this issue

in Section 10.3 to show that this discount factor can be learned on-the-ŕy, resulting in algorithms

that are truly free of prior knowledge.

Interestingly, the discount factor γ∗ in Theorem 10.2.3 can help to shed some light on the

variability measure P γ
∗

T (u). Observe from the relation in Equation (10.2) that γ∗ can be near zero

only when P
γ∗

T (u) is very large relative to the stability penalty, and likewise, if γ∗ is near 1 then

P
γ∗

T (u) must be inconsequentially small. In this sense, the P γ
∗

T (u) corresponding to small γ∗ can be

regarded as the worst-case measures of variability. Yet as γ∗ approaches zero, P γ
∗

T (u) approaches

∑t−1t≙1 [ℓt(ut+1) − ℓt(ut)∥+, which can be naturally related other standard measures of variability.

Indeed, this penalty is similar in spirit to the temporal variability ∑T−1t≙1 ∣ℓt+1(ut) − ℓt(ut)∣ studied

in works such as Campolongo and Orabona (2021) and Besbes, Gur, and Zeevi (2015), and can be

related to the path-length ∑T−1t≙1 ∥ut − ut+1∥ via convexity of ℓt. In this sense, P γ
∗

T (u) can be thought

of as a relaxation of the more common measures of variability.

76

10.2.1 Small-loss Bounds via Self-conődent Predictions

In the previous section, we saw that the discounted VAW forecaster can achieve regret scaling as

O (√dP γ∗T (u)∑Tt≙1(yt − ỹt)2), where ỹt ∈ R is an arbitrary “hintž available before observing the true

yt. One particularly interesting option is to use the learner’s own prediction as a hint, ỹt ≙ ⟨xt,wt⟩.
The reasoning is that any learner achieving low dynamic regret must be predicting yt reasonably

well on average, so their own predictions would naturally make for reasonable predicted labels ỹt.

Concretely, observe that by choosing ỹt ≙ ⟨xt,wt⟩ we would have ∑Tt≙1(yt−ỹt)2 ≙ ∑Tt≙1(yt−⟨xt,wt⟩)2 ≙
2∑Tt≙1 ℓt(wt), and hence for some γ ∈ [0,1∥ the guarantee in Theorem 10.2.3 would scale as

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut) ≤ Õ⎛⎜⎝
¿ÁÁÀdP

γ
T (u) T∑

t≙1

ℓt(wt)⎞⎟⎠ ,
where the Õ(⋅) hides the logarithmic factor. Now notice that ∑Tt≙1 ℓt(wt) appears on both sides of

this inequality. Solving for ∑Tt≙1 ℓt(wt), we őnd that
√
∑Tt≙1 ℓt(wt) ≤ Õ (√dP γT (u) +√∑Tt≙1 ℓt(ut)) ,

so plugging this back into the regret bound we have

RT (u) ≤ Õ⎛⎜⎝P γT (u) +
¿ÁÁÀP

γ
T (u) T∑

t≙1

ℓt(ut)⎞⎟⎠ .
Bounds of this form, sometimes called small-loss or L∗ bounds, are highly desirable because they

naturally adapt to the total loss of the comparator sequence, potentially leading to lower regret

than more naive hint choices such as ỹt ≙ yt−1 or ỹt ≙ 0.

Unfortunately, the above argument does not quite go through because the now the logarithmic

penalty in Theorem 10.2.3 scales as O (dmaxt(yt − ỹt)2 log (T)) ≙ O (dmaxt ℓt(wt) log (T)), and

this maxt ℓt(wt) could be arbitrarily large. Fortunately, it turns out that this issue can be remedied

by a simple trust-region argument. On each round, instead of directly using hints ỹt ≙ ⟨xt,wt⟩, we

can constrain these predictions to be close to some arbitrary reference point yRef
t . In particular, in

Lemma C.2.7 we show by clipping the learner’s predictions to a suitable interval centered at yRef
t

we can guarantee (yt − ỹt)2 ≤ O (maxt(yt − yRef
t)2 ∧ ℓt(wt)). This gives us the best-of-both-worlds:

a similar self-bounding argument to above still yields a small-loss penalty O(√dP γT (u)∑Tt≙1 ℓt(ut)),
while the logarithmic penalty can be bounded as O (dmaxt(yt − yRef

t)2 log (T)) ≤ O(dmaxt y
2
t log (T))

by setting yRef
t ≙ yt−1 or yRef

t ≙ 0. The following theorem follows this above argument through,

demonstrating that the discounted VAW forecaster can achieve small-loss bounds when using a

well-chosen discount factor.

77

Theorem 10.2.4. Let yRef
t ∈ R be an arbitrary reference point and let Bt ≙ [yRef

t −Mt, y
Ref
t +Mt∥ for

Mt ≙ maxs<t ∣ys − yRef
s ∣. Suppose that we apply Algorithm 12 with hints ỹt ≙ ClipBt(⟨xt,wt⟩). Then

for any sequence of losses ℓ1, . . . , ℓT and any sequence u ≙ (u1, . . . , uT) in R
d, there is a γ○ ∈ [0,1∥

satisfying

γ○ ≙

√
d∑Tt≙1 ℓt(ut)√

d∑Tt≙1 ℓt(ut) +√P γ○T (u) . (10.3)

Moreover, running Algorithm 12 with discount γ○ ∨ γmin for γmin ≙
2d

2d+1
ensures

RT (u) ≤ O(dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) +
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)),
Notice that unlike the previous section, there are two different variability penalties, P γ

○

T (u) and

P
γmin

T (u). The őrst mirrors the measure encountered in the last section. The other, P γmin

T (u), is

rather annoying; in high dimensions γmin ≙
2d

2d+1
is generally quite large, so P γmin

T (u) may evaluate

losses at irrelevant comparators that are far away in time. Nevertheless, notice that this term

satisőes P γmin

T (u) ≤ ∑T−1t≙1 maxs [ℓs(ut+1) − ℓs(ut)∥+, a penalty which we will show is unavoidable in

general in Theorem 10.2.5.

10.2.2 Dimension-dependent Lower Bound

In this section, we show that the regret penalties observed in the previous sections are unavoidable

without further assumptions. The following lower bound is proven in Appendix C.2.3.

Theorem 10.2.5. For any d, T ≥ 1 and P,Y > 0 such that dP ≤ 2TY 2, there is a sequence of losses

ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2 and a comparator sequence u ≙ (u1, . . . , uT) satisfying maxt ∣yt∣ ≤ Y and

∑T−1t≙1 maxs [ℓs(ut+1) − ℓs(ut)∥+ ≤ P such that

RT (u) ≥ Ω⎛⎜⎝dY 2 log (T) + dP +
¿ÁÁÀdP

T

∑
t≙2

(yt − yt−1)2⎞⎟⎠ .

The key observation is that there is always a sequence of losses such that ∑Tt≙1 ℓt(ut) ≙ 0 can

be ensured using only T /d different comparators. Indeed, letting the features xt cycle through the

standard basis vectors, for any sub-interval [s, s + d∥ ⊆ [1, T ∥ we can choose a single u ∈ Rd such

that ⟨xt, u⟩ ≙ yt for each t in the interval. Then by sampling the yt randomly from {−Y σ,Y σ}
for some σ ∈ [0,1∥, we can ensure variability of at most O(TY 2σ2/d) ≤ P but regret of at least

Ω(TY 2σ2) ≥ Ω(√dP [∑Tt≙1(yt − yt−1)2 ∨ dP]).

78

Note that the condition dP ≤ 2TY 2 captures a natural restriction of the problem setting, in

that for larger P the vacuous lower bound RT (u) ≥ Ω(TY 2) can be constructed. Indeed, in the

boundary case where dP ≙ 2TY 2, Theorem 10.2.5 tells us that there is a sequence such that RT (u) ≥
Ω (√dPVT) ≙ Ω (dP) ≙ Ω (TY 2). Yet this bound is achieved against any comparator sequence by

the algorithm that naively predicts 0 on every round: RT (u) ≙ ∑Tt≙1 ℓt(0)−ℓt(ut) ≤ ∑Tt≙1 1
2
y2t ≤

1
2
TY 2.

Hence, no lower bound can exceed 1
2
TY 2, so it is sufficient to consider comparator sequences with

variability bounded by P ≤ 2TY 2.

If we instead consider a more restricted problem setting by assuming a bounded domain, then

the losses ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2 can be considered to be exp-concave. In this setting, Baby and

Y.-X. Wang (2021) have shown a lower bound of

RT (u) ≥ Ω (Y 4/3d1/3T 1/3C2/3
T) , (10.4)

where CT ≙ ∑T−1t≙1 ∥ut − ut−1∥1. A natural question is whether similar results also hold in the un-

bounded setting, and how they compare to our lower bound in Theorem 10.2.5. Note that even in

the exp-concave setting, the bound in Equation (10.4) is not necessarily tight. Indeed, Baby and

Y.-X. Wang (2021) provide an algorithm which guarantees

RT (u) ≤ Õ(Y 4/3d3.5T 1/3C2/3
T),

which does not match the lower bound w.r.t. the dimension d. In contrast, our lower bound in

Theorem 10.2.5 matches our upper bounds in all involved quantities (see Sections 10.2 and 10.3).

Regardless, we also demonstrate in Appendix C.2 that the same Õ(Y 4/3d3.5T 1/3C2/3
T) upper bound

can be attained, even in unbounded domains, using the strongly-adaptive guarantees developed in

Section 10.4.

10.3 Learning the Optimal Discount Factor

Recall that our goal from the outset has been to design algorithms that achieve favourable dynamic

regret guarantees using no prior knowledge. To this end, we showed in Section 10.2 that the

discounted VAW forecaster can achieve dynamic regret guarantees of the form

RT (u) ≤ O (√dP γT (u)T ∨ d log (T))
where P γT (u) is a certain measure of variability of the comparator sequence, and in Section 10.2.2

we showed that these penalties are unavoidable in general. However, these results hold under the

assumption that the learner chooses discount rates satisfying special conditions (Equations (10.2)

and (10.3)), either of which would require exceptionally strong prior knowlege to ensure. Indeed,

79

the learner would need to know the future! In order to achieve our goal of learning in the complete

absence of prior knowledge, we need to ensure that the learner can adequately guess or learn these

ideal discount factors on-the-ŕy.

A common way to achieve runtime parameter-tuning of this sort would be to run many instances

of the algorithm for different choices of γ in parallel, and combine the predictions using a suitable

meta-algorithm. In particular, suppose we have a collection of algorithms A1, . . . ,AN and on each

round we can query each Ai for a prediction y
(i)
t ∈ R. Moreover, suppose we have a meta-algorithm

AMeta which tells us how to combine these predictions by outputting a pt from the N -dimensional

simplex ∆N . Then by predicting yt ≙ ∑Ni≙1 ptiy(i)t , 2 for any benchmark sequence u ≙ (u1, . . . , uT)
and any j ∈ [N∥ we have

RT (u) ≙ T

∑
t≙1

ℓt(yt) − ℓt(ut)
≙

T

∑
t≙1

ℓt(y(j)t) − ℓt(ut)
´¹¹¹¸¹¹¹¶

≙∶R
Aj
T
(u)

+

T

∑
t≙1

ℓt(yt) − ℓt(y(j)t)
´¹¹¸¹¹¹¶

≙∶RMeta

T (ej)

where the last line observes that y
(j)
t ≙ ⟨xt,w(j)t ⟩. Hence, we may achieve our goal if we can ensure

1) that there is a j ∈ [N∥ such that Aj uses a near-optimal discount factor γj , and 2) we can provide

a meta-algorithm which guarantees low regret RMeta
T (ej). We őrst investigate the latter point, and

return to the former in Theorems 10.3.2 and 10.3.3.

The obvious approach to bounding the meta-algorithm’s regret would be to observe that the

losses ℓt(yt) ≙ 1
2
(yt − yt)2 are αt-exp-concave for αt ≙

1

2maxi ℓt(y(i)t) (Lemma C.2.8), which will allow

us to apply an instance of the őxed-share algorithm (Nicolo Cesa-Bianchi, Gaillard, et al. 2012) to

get:

RMeta
T (ej) ≤ O (log (NT)

αT+1
) ≤ O(max

t,i
ℓt(y(i)t) log (NT)),

as shown in Theorem C.2.12. However, just like in Section 10.2.1, the term maxt,i ℓt(y(i)t) is hard to

quantify and could be be arbitrarily large in general. Fortunately the very same clipping trick used

in Section 10.2.1 also works here: instead of having the meta-algorithm combine the raw predictions

y
(i)
t , we can simply clip the predictions to a trust-region around a given reference point yRef

t . In

Lemma C.2.9 we show that the clipping strategy detailed in Algorithm 13 incurs only an additional

2Recall from the introduction that because the features xt are provided at the start of the round, we can work
directly in the output space R if we so choose by setting wt ≙ ytxt/ ∥xt∥2. Hence, given y ∈ R we allow a slight abuse
of notation by letting ℓt(y) ≙ 1

2
(yt − y)2.

80

Algorithm 13: Range-clipped Meta-algorithm

1 Input: Online learning algorithms A1, . . . ,AN , experts algorithm AMeta over the simplex
∆N .

2 Initialize: AMeta,A1, . . . ,AN , and set M1 ≙ 0

3 for t ≙ 1 ∶ T do
4 Receive features xt
5 Choose reference point yRef

t

6 Deőne Bt ≙ [yRef
t −Mt, y

Ref
t +Mt∥

7 for i ≙ 1, . . . ,N do
8 Send xt to Ai

9 Get prediction y
(i)
t ≙ ⟨xt,w(i)t ⟩ from Ai

10 Compute y
(i)
t ≙ ClipBt(y(i)t)

11 end
12 Get pt ∈∆N from AMeta

13 Predict yt ≙ ∑Ni≙1 ptiy(i)t and observe yt
14 Update Mt+1 ≙Mt ∨ ∣yt − yRef

t ∣
15

16 Send ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2 to Ai ∀i

17 Send ℓt(y(1)t), . . . , ℓt(y(N)t) to AMeta

18 end

constant penalty in the regret. Then, using Lemma C.2.7, using these clipped predictions leads to

RMeta
T (ej) ≤ O(max

t
(yt − yRef

t)2 log (NT)).
Note that a penalty of a similar order is already present in the regret of the VAW forecaster (e.g.

Theorem 10.2.1) so this result will be sufficient for our purposes. Overall, the following theorem

formalizes the argument described above. We provide a simpliőed statement here for brevity, but

the full statement and its proof can be found in Appendix C.2.4.

Theorem 10.3.1. (simpliőed) Let AMeta be the instance of őxed-share characterized in Theo-

rem C.2.12. Then for any sequence u ≙ (u1, . . . , uT) in R and any j ∈ [N∥, Algorithm 13 guarantees

RT (u) ≤ Ô (RAjT (u) +max
t
(yt − yRef

t)2 log (NT)) ,
where Ô(⋅) hides log log terms.

A similar target-clipping strategy was recently used by Mayo, Hadiji, and Erven (2022) to prove

a static regret result for scale-free unconstrained online regression. Theorem 10.3.1 generalizes

their approach by clipping to a trust-region of an arbitrary center yRef
t ∈ R, and offers a somewhat

81

streamlined argument which does not appeal to probabilistic notions such as mixibility.

Finally, with Theorem 10.3.1 in hand, we can achieve our desired result by running Algorithm 13

with the base algorithms Ai being instances of the discounted VAW forecaster with different discount

factors γ. The following theorems show that for a well-chosen set of discount factors, we can make

guarantees that match the bounds attained under oracle tuning of γ (Theorems 10.2.3 and 10.2.4),

yet require no prior knowledge of any sort. Proofs can be found in Appendix C.2.4 respectively.

Theorem 10.3.2. Let b > 1, ηmin ≙ 2d, ηmax ≙ dT , and for all i ∈ N let ηi ≙ ηminb
i
∧ ηmax, and

construct the set of discount factors Sγ ≙ {γi ≙ ηi
1+ηi
∶ i ∈ N}∪{0} . For any γ in Sγ, let Aγ denote an

instance of Algorithm 12 with discount γ.3 Let AMeta be an instance of the algorithm characterized

in Theorem 10.3.1, and suppose we set yRef
t ≙ ỹt for all t. Then for any u ≙ (u1, . . . , uT) in R

d,

Algorithm 13 guarantees

RT (u) ≤ O(dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ∗

T (u) T∑
t≙1

(yt − ỹt)2)
where γ∗ ∈ [0,1∥ satisőes Equation (10.2).

Theorem 10.3.3. Under the same conditions as Theorem 10.3.2, suppose each Aγ sets hints ỹt ≙

y
γ
t ≙ ClipBt(⟨, xt,wγt ⟩), where Bt ≙ [yRef

t −Mt, y
Ref
t +Mt∥ and Mt ≙ maxs<t ∣ys − yRef

s ∣. Then for any

u ≙ (u1, . . . , uT) in R
d, Algorithm 13 guarantees

RT (u) ≤ O(dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut))
where γmin ≙

2d
2d+1

and γ○ ∈ [0,1∥ satisőes Equation (10.3).

It is worth noting that Theorems 10.3.2 and 10.3.3 use knowledge of the horizon T to construct

the set of experts. All of our results extend immediately to the unknown T setting as well via

the standard doubling trick (Nicolo Cesa-Bianchi and Lugosi 2006), so for simplicity we treat T as

part of the problem setting rather than a potentially unknown property of the data. An interesting

direction for future development would be to construct the set of experts in a more on-the-ŕy way,

so as to avoid using the doubling trick to adapt to unknown T .

3For brevity, here we refer to an algorithm that directly predicts ỹt on every round as being an instance of the
discounted VAW forecaster with γ ≙ 0. This terminology can be justiőed by Remark C.2.2, but for our purposes here
it’s sufficient to consider it convenient alias.

82

10.4 Strongly-Adaptive Guarantees

While our original goal was only to achieve dynamic regret guarantees in the absence of prior knowl-

edge, it turns out that we can actually achieve an even stronger result: dynamic regret guarantees

that hold over every sub-interal [a, b∥ ⊆ [1, T ∥ simultaneously. To our knowledge, strongly-adaptive

guarantees of this sort have previously only been achieved under various boundedness assumptions

(Baby, Hasson, and Y. Wang 2021; Baby and Y.-X. Wang 2022b; Baby and Y.-X. Wang 2022a;

Jun, Orabona, et al. 2017; Cutkosky 2020; Daniely, Gonen, and Shalev-Shwartz 2015).

The results can be derived using the results in the previous section. As shown in Appendix C.2.4,

for any [s, τ∥ ⊆ [1, T ∥, u ≙ (us, . . . , uτ), and γ ∈ Sγ , Algorithm 13 more generally guarantees that

R[s,τ∥(u) ≤ Ô (RAγ[s,τ∥(u) +max
t
(yt − yRef

t)2 log (Nτ)) ,
where R[s,τ∥ denotes the regret over sub-interval [s, τ∥ ⊆ [1, T ∥. The only caveat is that the regret

guarantees of the discounted VAW forecaster only hold when the algorithm begins learning on round

s.4 However, suppose that for each s ∈ [1, T ∥ and each γ ∈ Sγ we deőne an algorithm Aγ,s which uses

discount γ but begins learning at time s. Then for any [s, τ∥ Lemma C.2.10 implies that there is a

Aγ,s such that R
Aγ,s[s,τ∥(u) ≤ O(dmaxt(yt − yRef

t)2 log (τ − s) + b√dP γ∗[s,τ∥(u)∑τt≙s(yt − ỹt)2). Plugging

this back into the previous display and choosing ∣Sγ ∣ ≤ O(log (T)), we have N ≤ O(T log (T)) and

an overall regret bound of

R[s,τ∥(u) ≤ Ô⎛⎝dmax
t
(yt − ỹt)2 log (T) + b

¿ÁÁÀdP
γ∗[s,τ∥(u) τ

∑
t≙s

(yt − ỹt)2⎞⎠.
This is the essence of the Follow the Leading History algorithm of Hazan and Comandur Seshadhri

(2007) and Hazan and C. Seshadhri (2009).

While the above approach leads to a strongly-adaptive guarantee, it would be excessively expen-

sive in general, since we’d now have O(T log (T)) total experts to update on every round. We may

instead lower this to O(log2(T)) experts using the geometric covering intervals of Daniely, Gonen,

and Shalev-Shwartz (2015) and Veness et al. (2013). The idea is as follows: instead of initializing

a new instance of each Aγ on every round s ∈ [T ∥, we will construct a set of intervals S such that

any [s, τ∥ ⊆ [1, T ∥ can be covered using only a small number of intervals from S. Then for each

γ ∈ Sγ and each I ∈ S, we can deőne an instance of the discounted VAW forecaster Aγ,I which is

run only during the interval I. The geometric covering intervals are constructed in such a way that

1) any round t can fall into at most O(log (T)) of the intervals, and 2) any [s, τ∥ ⊆ [1, T ∥ can be

4More generally, it can be seen from the analysis that if the algorithm starts at time t ≙ 1 and we try to bound
the regret over [s, τ∥, then after telescoping the divergence terms we will end up with a non-trivial term Dψs

(us∣ws)
which is hard to quantify in general for s > 1 without further assumptions.

83

covered using only O(log (τ − s)) disjoint intervals from S. The őrst property ensures that there at

most O(log2(T)) active experts on each round, while the second property implies that there is a

disjoint set of intervals I1, . . . , IK such that R[s,τ∥(u) ≙ ∑Ki≙1RIi(u), so bounding each of these using

a similar argument to the above followed by an application of Cauchy-Schwarz inequality yields

R[s,τ∥(u) ≤ Ô(dmax
t
(yt − ỹt)2 log2(T) + b

¿ÁÁÀdP
γ∗[s,τ∥(u) τ

∑
t≙s

(yt − ỹt)2),
where P[s,τ∥(u) is the total variability over the intervals and we’ve used K log (T) ≤ O(log2(T)).
Hence, overall the penalty we incur for using the geometric covering is a modest increase from

log (T) to K log (T) ≤ O(log2(T)) in the leading term. Likewise, a similar argument holds for our

small-loss bounds. We formalize these intuitions in the following theorem. Prof can be found in

Appendix C.2.5.

Theorem 10.4.1. Let Sγ be the set of discount factors deőned in Theorem 10.3.2, let S denote

a set of geometric covering intervals over [1, T ∥, and for each γ ∈ Sγ and I ∈ S, let Aγ,I be an

instance of Algorithm 12 using discount γ and applied during interval I. Let AMeta be an instance

of the meta-algorithm characterized in Theorem 10.3.1. Then for any [s, τ∥ ⊆ [1, T ∥, there is a set

of disjoint intervals I1, . . . , IK in S such that ∪Ki≙1Ii ≙ [s, τ∥, and moreover, for any u ≙ (us, . . . , uτ)
Algorithm 13 with yRef

t ≙ ỹt guarantees

R[s,τ∥(u) ≤ Ô⎛⎝dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ∗[s,τ∥(u) ∑

t∈[s,τ∥
(yt − ỹt)2⎞⎠

where P γ
∗

[s,τ∥(u) ≙ ∑Ki≙1 P γ∗iIi (u) and each γ∗i ∈ [0,1∥ satisőes γ∗i ≙

√
d
2
∑t∈Ii

(yt−ỹt)2√
d
2
∑t∈Ii

(yt−ỹt)2+
√
P
γ∗
i

Ii
(u)

.

If we instead suppose each Aγ,I sets hints as in Theorem 10.3.3, then for any u ≙ (us, . . . , uτ)
Algorithm 13 guarantees

R[s,τ∥(u) ≤ Ô⎛⎝dP γmin[s,τ∥(u) + dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ○[s,τ∥(u) ∑

t∈[s,τ∥
ℓt(ut)⎞⎠

where P γ
○

[s,τ∥(u) ≙ ∑Ki≙1 P γ○iIi (u) and each γ○i ∈ [0,1∥ satisőes γ○i ≙

√
d∑t∈Ii

ℓt(ut)
√
d∑t∈Ii

ℓt(ut)+
√
P
γ○
i

Ii
(u)

.

10.5 Conclusion

In this chapter, we designed algorithms for online linear regression which achieve optimal dynamic

regret guarantees, even in the absence of all prior knowledge. We developed a novel analysis of a

84

discounted variant of the Vovk-Azoury-Warmuth forecaster, showing that it can guarantee dynamic

regret of the form RT (u) ≤ O (d log (T) ∨√dP γT (u)T) when equipped with an appropriate discount

factor (Section 10.2). We also provided a matching lower bound, demonstrating that these penalties

are unavoidable in general (Section 10.2.2). We then showed that the ideal discount factors can

be learned on-the-ŕy, resulting in algorithms that can be applied in the complete absence of prior

knowledge yet still make optimal dynamic regret guarantees (Section 10.3) and strongly-adaptive

guarantees (Section 10.4). These are the őrst algorithms for online linear regression that make

meaningful guarantees without making assumptions of any kind on the underlying data.

As in the previous chapter, an important direction for future work is to reduce the computational

complexity of the algorithms. Similar to the traditional VAW forecaster, the approach developed

here can be infeasible for very high-dimensional features, requiring roughly O(d2 log (T)) compu-

tation every round. The d2 factor likely can be reduced by extending our analysis to use modern

sketching techniques (Luo, Agarwal, et al. 2016), and the log (T) factor can possibly be reduced

using similar techniques to the recent work of Z. Lu and Hazan (2022).

85

Bibliography

Abbeel, Pieter, Adam Coates, Morgan Quigley, and Andrew Y Ng (2007). “An application of rein-

forcement learning to aerobatic helicopter ŕight.ž In: Advances in neural information processing

systems (cit. on p. 1).

Abernethy, Jacob, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari (2014). “Online Linear Opti-

mization via Smoothing.ž In: Proceedings of The 27th Conference on Learning Theory. Ed. by

Maria Florina Balcan, Vitaly Feldman, and Csaba Szepesvari. Vol. 35. Proceedings of Machine

Learning Research. Barcelona, Spain: PMLR, pp. 807ś823 (cit. on p. 15).

Asi, Hilal and John C. Duchi (2019). “Stochastic (Approximate) Proximal Point Methods: Con-

vergence, Optimality, and Adaptivity.ž In: SIAM Journal on Optimization 29.3, pp. 2257ś2290

(cit. on p. 38).

Azizian, Waïss, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel

(2020). “Accelerating Smooth Games by Manipulating Spectral Shapes.ž In: Proceedings of the

Twenty Third International Conference on Artiőcial Intelligence and Statistics. Ed. by Silvia

Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR,

pp. 1705ś1715 (cit. on p. 52).

Azoury, Katy S and Manfred K Warmuth (2001). “Relative loss bounds for on-line density estimation

with the exponential family of distributions.ž In: Machine learning 43, pp. 211ś246 (cit. on

pp. 69ś71, 167).

Baby, Dheeraj, Hilaf Hasson, and Yuyang Wang (2021). Dynamic Regret for Strongly Adaptive

Methods and Optimality of Online KRR. arXiv: 2111.11550 [cs.LG] (cit. on pp. 71, 83).

Baby, Dheeraj and Yu-Xiang Wang (2021). “Optimal Dynamic Regret in Exp-Concave Online Learn-

ing.ž In: Proceedings of Thirty Fourth Conference on Learning Theory. Ed. by Mikhail Belkin

and Samory Kpotufe. Vol. 134. Proceedings of Machine Learning Research. PMLR, pp. 359ś409

(cit. on pp. 71, 79, 196).

Ð (2022a). “Optimal Dynamic Regret in LQR Control.ž In: Advances in Neural Information Pro-

cessing Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh.

Vol. 35. Curran Associates, Inc., pp. 24879ś24892 (cit. on p. 83).

86

https://arxiv.org/abs/2111.11550

Baby, Dheeraj and Yu-Xiang Wang (2022b). “Optimal Dynamic Regret in Proper Online Learning

with Strongly Convex Losses and Beyond.ž In: Proceedings of The 25th International Conference

on Artiőcial Intelligence and Statistics. Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and

Isabel Valera. Vol. 151. Proceedings of Machine Learning Research. PMLR, pp. 1805ś1845 (cit.

on p. 83).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine translation by

jointly learning to align and translate.ž In: arXiv preprint arXiv:1409.0473 (cit. on p. 1).

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2015). “Non-Stationary Stochastic Optimization.ž

In: Operations Research 63.5, pp. 1227ś1244 (cit. on p. 76).

Boyd, Stephen P and Lieven Vandenberghe (2004). Convex optimization. Cambridge university press

(cit. on p. 48).

Campolongo, Nicolò and Francesco Orabona (2020). “Temporal Variability in Implicit Online Learn-

ing.ž In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., pp. 12377ś12387 (cit. on

pp. 38, 39).

Ð (2021). A Closer Look at Temporal Variability in Dynamic Online Learning. arXiv: 2102.07666

[cs.LG] (cit. on p. 76).

Cesa-Bianchi, Nicolo, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz (2012). “Mirror descent meets

őxed share (and feels no regret).ž In: Advances in Neural Information Processing Systems 25

(cit. on pp. 27, 80, 197).

Cesa-Bianchi, Nicolo, Philip M Long, and Manfred K Warmuth (1996). “Worst-case quadratic loss

bounds for prediction using linear functions and gradient descent.ž In: IEEE Transactions on

Neural Networks 7.3, pp. 604ś619 (cit. on p. 11).

Cesa-Bianchi, Nicolo and Gábor Lugosi (2006). Prediction, learning, and games. Cambridge univer-

sity press (cit. on pp. 6, 72, 82).

Chen, Keyi, Ashok Cutkosky, and Francesco Orabona (2022). “Implicit Parameter-free Online

Learning with Truncated Linear Models.ž In: Proceedings of The 33rd International Confer-

ence on Algorithmic Learning Theory. Ed. by Sanjoy Dasgupta and Nika Haghtalab. Vol. 167.

Proceedings of Machine Learning Research. PMLR, pp. 148ś175 (cit. on p. 39).

Chen, Liyu, Haipeng Luo, and Chen-Yu Wei (2021). “Impossible Tuning Made Possible: A New Ex-

pert Algorithm and Its Applications.ž In: Proceedings of Thirty Fourth Conference on Learning

Theory. Ed. by Mikhail Belkin and Samory Kpotufe. Vol. 134. Proceedings of Machine Learning

Research. PMLR, pp. 1216ś1259 (cit. on pp. 27, 130).

Couchman, Hugh, Robert Deupree, Ken Edgecombe, Wagdi Habashi, Richard Peltier, Jonathan

Schaeffer, and Danial Senechal (2015). A proposal to the Canada Foundation for Innovation ś

National Platforms Fund. https://www.computecanada.ca/wp-content/uploads/2015/02/

NPF.pdf. Accessed: August 01, 2020 (cit. on p. 2).

87

https://arxiv.org/abs/2102.07666
https://arxiv.org/abs/2102.07666
https://www.computecanada.ca/wp-content/uploads/2015/02/NPF.pdf
https://www.computecanada.ca/wp-content/uploads/2015/02/NPF.pdf

Cutkosky, Ashok (2019a). “Artiőcial Constraints and Hints for Unbounded Online Learning.ž In:

Proceedings of the Thirty-Second Conference on Learning Theory. Ed. by Alina Beygelzimer

and Daniel Hsu. Vol. 99. Proceedings of Machine Learning Research. Phoenix, USA: PMLR,

pp. 874ś894 (cit. on pp. 11, 12, 35ś37).

Ð (2019b). “Combining Online Learning Guarantees.ž In: Proceedings of the Thirty-Second Con-

ference on Learning Theory. Ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99. Proceedings of

Machine Learning Research. Phoenix, USA: PMLR, pp. 895ś913 (cit. on pp. 58, 142).

Ð (2020). “Parameter-free, Dynamic, and Strongly-Adaptive Online Learning.ž In: Proceedings of

the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh.

Vol. 119. Proceedings of Machine Learning Research. Virtual: PMLR, pp. 2250ś2259 (cit. on

pp. 21, 83).

Cutkosky, Ashok and Kwabena Boahen (2017). “Online Learning Without Prior Information.ž In:

Proceedings of the 2017 Conference on Learning Theory. Ed. by Satyen Kale and Ohad Shamir.

Vol. 65. Proceedings of Machine Learning Research. PMLR, pp. 643ś677 (cit. on p. 35).

Cutkosky, Ashok and Francesco Orabona (2018). “Black-Box Reductions for Parameter-free Online

Learning in Banach Spaces.ž In: Proceedings of the 31st Conference On Learning Theory. Ed.

by Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Vol. 75. Proceedings of Machine

Learning Research. PMLR, pp. 1493ś1529 (cit. on pp. 12, 13, 15, 54, 55, 61).

Cutkosky, Ashok and Tamas Sarlos (2019). “Matrix-Free Preconditioning in Online Learning.ž In:

Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaud-

huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,

pp. 1455ś1464 (cit. on pp. 13, 15, 32, 35).

Daniely, Amit, Alon Gonen, and Shai Shalev-Shwartz (2015). “Strongly Adaptive Online Learn-

ing.ž In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis

Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR,

pp. 1405ś1411 (cit. on pp. 21, 60, 83, 194).

Du, Simon S., Gauthier Gidel, Michael I. Jordan, and Chris Junchi Li (2022). Optimal Extragradient-

Based Bilinearly-Coupled Saddle-Point Optimization (cit. on pp. 3, 51, 52).

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for online

learning and stochastic optimization.ž In: Journal of machine learning research 12.7 (cit. on

p. 11).

Duchi, John C, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari (2010). “Composite Objec-

tive Mirror Descent.ž In: COLT, pp. 14ś26 (cit. on p. 25).

Fang, Huang, Nick Harvey, Victor Portella, and Michael Friedlander (2020). “Online mirror descent

and dual averaging: keeping pace in the dynamic case.ž In: Proceedings of the 37th International

Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, pp. 3008ś3017 (cit. on p. 25).

88

Foster, Dean, Satyen Kale, and Howard Karloff (2016). “Online Sparse Linear Regression.ž In: 29th

Annual Conference on Learning Theory. PMLR (cit. on p. 69).

Gaillard, Pierre, Sébastien Gerchinovitz, Malo Huard, and Gilles Stoltz (2019). “Uniform regret

bounds over Rd for the sequential linear regression problem with the square loss.ž In: Proceedings

of the 30th International Conference on Algorithmic Learning Theory. Ed. by Aurélien Garivier

and Satyen Kale. Vol. 98. Proceedings of Machine Learning Research. PMLR, pp. 404ś432 (cit.

on p. 182).

Ghai, Udaya, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang (2020). “No-Regret Prediction in

Marginally Stable Systems.ž In: Proceedings of Thirty Third Conference on Learning Theory. Ed.

by Jacob Abernethy and Shivani Agarwal. Vol. 125. Proceedings of Machine Learning Research.

PMLR, pp. 1714ś1757 (cit. on p. 70).

Gyorgy, Andras and Csaba Szepesvari (2016). “Shifting Regret, Mirror Descent, and Matrices.ž In:

Proceedings of The 33rd International Conference on Machine Learning. Ed. by Maria Florina

Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New

York, New York, USA: PMLR, pp. 2943ś2951 (cit. on pp. 27, 54).

Hall, Eric C. and Rebecca M. Willett (2016). Online Optimization in Dynamic Environments. arXiv:

1307.5944 [stat.ML] (cit. on pp. 27, 54).

Hazan, Elad (2019). “Introduction to Online Convex Optimization.ž In: CoRR abs/1909.05207.

arXiv: 1909.05207 (cit. on pp. 9, 197).

Hazan, Elad, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang (2018). “Spectral őltering for

general linear dynamical systems.ž In: Advances in Neural Information Processing Systems 31

(cit. on p. 70).

Hazan, Elad and C. Seshadhri (2009). “Efficient Learning Algorithms for Changing Environments.ž

In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML ’09.

Montreal, Quebec, Canada: Association for Computing Machinery, pp. 393ś400 (cit. on pp. 21,

83).

Hazan, Elad and Comandur Seshadhri (2007). “Adaptive algorithms for online decision problems.ž

In: Electronic colloquium on computational complexity (ECCC). Vol. 14. 088 (cit. on pp. 21, 83).

Hazan, Elad and Karan Singh (2022). Introduction to Online Nonstochastic Control (cit. on p. 70).

Hazan, Elad, Karan Singh, and Cyril Zhang (2017). “Learning linear dynamical systems via spectral

őltering.ž In: Advances in Neural Information Processing Systems 30 (cit. on p. 70).

Hoeven, Dirk van der (2019). “User-Speciőed Local Differential Privacy in Unconstrained Adaptive

Online Learning.ž In: NeurIPS, pp. 14080ś14089 (cit. on pp. 12, 13, 15).

Ibrahim, Adam, Waïss Azizian, Gauthier Gidel, and Ioannis Mitliagkas (2020). “Linear Lower

Bounds and Conditioning of Differentiable Games.ž In: Proceedings of the 37th International

Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings

of Machine Learning Research. PMLR, pp. 4583ś4593 (cit. on p. 52).

89

https://arxiv.org/abs/1307.5944
https://arxiv.org/abs/1909.05207

Jacobsen, Andrew and Ashok Cutkosky (2022). “Parameter-free Mirror Descent.ž In: Proceedings of

Thirty Fifth Conference on Learning Theory. Ed. by Po-Ling Loh and Maxim Raginsky. Vol. 178.

Proceedings of Machine Learning Research. PMLR, pp. 4160ś4211 (cit. on pp. iii, 3, 23, 71, 75,

102).

Ð (2023). “Unconstrained Online Learning with Unbounded Losses.ž In: Proceedings of the 40th In-

ternational Conference on Machine Learning. Ed. by Andreas Krause, Emma Brunskill, Kyunghyun

Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett. Vol. 202. Proceedings of Ma-

chine Learning Research. PMLR, pp. 14590ś14630 (cit. on pp. iii, 24).

Ð (2024). “Online Linear Regression in Dynamic Environments via Discounting.ž In: Forty-őrst

International Conference on Machine Learning (cit. on p. iii).

Jadbabaie, Ali, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan (2015). “Online

Optimization : Competing with Dynamic Comparators.ž In: Proceedings of the Eighteenth Inter-

national Conference on Artiőcial Intelligence and Statistics. Ed. by Guy Lebanon and S. V. N.

Vishwanathan. Vol. 38. Proceedings of Machine Learning Research. San Diego, California, USA:

PMLR, pp. 398ś406 (cit. on p. 60).

Jun, Kwang-Sung and Francesco Orabona (2019). “Parameter-Free Online Convex Optimization

with Sub-Exponential Noise.ž In: Proceedings of the Thirty-Second Conference on Learning The-

ory. Ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99. Proceedings of Machine Learning Re-

search. Phoenix, USA: PMLR, pp. 1802ś1823 (cit. on pp. 13, 35).

Jun, Kwang-Sung, Francesco Orabona, Stephen Wright, and Rebecca Willett (2017). “Improved

Strongly Adaptive Online Learning using Coin Betting.ž In: Proceedings of the 20th International

Conference on Artiőcial Intelligence and Statistics. Ed. by Aarti Singh and Jerry Zhu. Vol. 54.

Proceedings of Machine Learning Research. PMLR, pp. 943ś951 (cit. on pp. 15, 21, 60, 83).

Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering and Prediction Problems.ž In:

Transactions of the ASMEśJournal of Basic Engineering 82.Series D, pp. 35ś45 (cit. on p. 70).

Kempka, Michal, Wojciech Kotlowski, and Manfred K. Warmuth (2019). “Adaptive Scale-Invariant

Online Algorithms for Learning Linear Models.ž In: Proceedings of the 36th International Con-

ference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.

Proceedings of Machine Learning Research. PMLR, pp. 3321ś3330 (cit. on pp. 12, 15, 70).

Kivinen, J., M.K. Warmuth, and B. Hassibi (2006). “The p-norm generalization of the LMS algo-

rithm for adaptive őltering.ž In: IEEE Transactions on Signal Processing 54.5, pp. 1782ś1793

(cit. on p. 70).

Kivinen, Jyrki and Manfred K Warmuth (1997). “Exponentiated gradient versus gradient descent

for linear predictors.ž In: information and computation 132.1, pp. 1ś63 (cit. on p. 11).

Kotłowski, Wojciech (2017). “Scale-Invariant Unconstrained Online Learning.ž In: Proceedings of the

28th International Conference on Algorithmic Learning Theory. Ed. by Steve Hanneke and Lev

90

Reyzin. Vol. 76. Proceedings of Machine Learning Research. Kyoto University, Kyoto, Japan:

PMLR, pp. 412ś433 (cit. on p. 70).

Kozdoba, Mark, Jakub Marecek, Tigran Tchrakian, and Shie Mannor (2019). “On-line learning of

linear dynamical systems: Exponential forgetting in kalman őlters.ž In: Proceedings of the AAAI

Conference on Artiőcial Intelligence. Vol. 33. 01, pp. 4098ś4105 (cit. on p. 70).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.ž In: nature 521.7553,

pp. 436ś444 (cit. on p. 1).

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,

David Silver, and Daan Wierstra (2015). “Continuous control with deep reinforcement learning.ž

In: arXiv preprint arXiv:1509.02971 (cit. on p. 1).

Liu, Mingrui and Francesco Orabona (2022). “On the Initialization for Convex-Concave Min-max

Problems.ž In: Proceedings of The 33rd International Conference on Algorithmic Learning The-

ory. Ed. by Sanjoy Dasgupta and Nika Haghtalab. Vol. 167. Proceedings of Machine Learning

Research. PMLR, pp. 743ś767 (cit. on pp. 49, 52).

Lu, Zhou and Elad Hazan (2022). Efficient Adaptive Regret Minimization (cit. on p. 85).

Luo, Haipeng, Alekh Agarwal, Nicolò Cesa-Bianchi, and John Langford (2016). “Efficient Second

Order Online Learning by Sketching.ž In: Advances in Neural Information Processing Systems.

Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates,

Inc. (cit. on pp. 70, 85).

Luo, Haipeng, Mengxiao Zhang, Peng Zhao, and Zhi-Hua Zhou (2022). “Corralling a Larger Band of

Bandits: A Case Study on Switching Regret for Linear Bandits.ž In: Proceedings of Thirty Fifth

Conference on Learning Theory. Ed. by Po-Ling Loh and Maxim Raginsky. Vol. 178. Proceedings

of Machine Learning Research. PMLR, pp. 3635ś3684 (cit. on pp. 64, 71).

Mayo, Jack J., Hedi Hadiji, and Tim van Erven (2022). “Scale-free Unconstrained Online Learning

for Curved Losses.ž In: Proceedings of Thirty Fifth Conference on Learning Theory. Ed. by Po-

Ling Loh and Maxim Raginsky. Vol. 178. Proceedings of Machine Learning Research. PMLR,

pp. 4464ś4497 (cit. on pp. 11, 12, 70, 81, 182).

Mcmahan, Brendan and Matthew Streeter (2012). “No-Regret Algorithms for Unconstrained On-

line Convex Optimization.ž In: Advances in Neural Information Processing Systems. Ed. by F.

Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc.

(cit. on pp. 11, 12, 46, 54, 130).

McMahan, H. Brendan (2017). “A Survey of Algorithms and Analysis for Adaptive Online Learning.ž

In: J. Mach. Learn. Res. 18.1, pp. 3117ś3166 (cit. on pp. 6, 25, 96, 97).

McMahan, H. Brendan and Francesco Orabona (2014). “Unconstrained Online Linear Learning in

Hilbert Spaces: Minimax Algorithms and Normal Approximations.ž In: Proceedings of The 27th

Conference on Learning Theory. Vol. 35. Proceedings of Machine Learning Research. Barcelona,

Spain: PMLR, pp. 1020ś1039 (cit. on pp. 12, 13, 35, 54).

91

McMahan, H. Brendan and Matthew J. Streeter (2010). “Adaptive Bound Optimization for Online

Convex Optimization.ž In: CoRR abs/1002.4908. arXiv: 1002.4908 (cit. on p. 11).

Mhammedi, Zakaria and Wouter M. Koolen (2020). “Lipschitz and Comparator-Norm Adaptivity

in Online Learning.ž In: Proceedings of Thirty Third Conference on Learning Theory. Ed. by

Jacob Abernethy and Shivani Agarwal. Vol. 125. Proceedings of Machine Learning Research.

PMLR, pp. 2858ś2887 (cit. on pp. 12, 13, 15, 32, 35, 36, 47, 71, 118).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. (2015).

“Human-level control through deep reinforcement learning.ž In: nature 518.7540, pp. 529ś533

(cit. on p. 1).

Ng, Andrew Y, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger,

and Eric Liang (2006). “Autonomous inverted helicopter ŕight via reinforcement learning.ž In:

Experimental robotics IX (cit. on p. 1).

Orabona, Francesco (2013). “Dimension-Free Exponentiated Gradient.ž In: Advances in Neural In-

formation Processing Systems. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger. Vol. 26. Curran Associates, Inc. (cit. on pp. 11, 12, 46).

Ð (2019). “A Modern Introduction to Online Learning.ž In: CoRR abs/1912.13213. arXiv: 1912.

13213 (cit. on pp. 6, 9, 15, 16, 97, 106).

Orabona, Francesco, Nicolo Cesa-Bianchi, and Claudio Gentile (2012). “Beyond Logarithmic Bounds

in Online Learning.ž In: Proceedings of the Fifteenth International Conference on Artiőcial In-

telligence and Statistics. Ed. by Neil D. Lawrence and Mark Girolami. Vol. 22. Proceedings of

Machine Learning Research. La Palma, Canary Islands: PMLR, pp. 823ś831 (cit. on pp. 11, 67).

Orabona, Francesco, Koby Crammer, and Nicolò Cesa-Bianchi (2015). “A Generalized Online Mirror

Descent with Applications to Classiőcation and Regression.ž In: Mach. Learn. 99.3, pp. 411ś435

(cit. on pp. 69ś71).

Orabona, Francesco and Kwang-Sung Jun (2023). “Tight Concentrations and Conődence Sequences

from the Regret of Universal Portfolio.ž In: IEEE Transactions on Information Theory, pp. 1ś1

(cit. on p. 41).

Orabona, Francesco and Dávid Pál (2016). “Coin Betting and Parameter-Free Online Learning.ž

In: Proceedings of the 30th International Conference on Neural Information Processing Systems.

NIPS’16. Barcelona, Spain: Curran Associates Inc., pp. 577ś585 (cit. on pp. 12, 13, 15, 16, 54).

Ð (2018). “Scale-free online learning.ž In: Theoretical Computer Science 716. Special Issue on ALT

2015, pp. 50ś69 (cit. on pp. 9, 11, 12, 16, 25).

Ð (2021). “Parameter-free Stochastic Optimization of Variationally Coherent Functions.ž In: arXiv:

2102.00236 [math.OC] (cit. on pp. 15, 104).

Rakhlin, Alexander and Karthik Sridharan (2017). “On Equivalence of Martingale Tail Bounds and

Deterministic Regret Inequalities.ž In: Proceedings of the 2017 Conference on Learning Theory.

92

https://arxiv.org/abs/1002.4908
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/2102.00236

Ed. by Satyen Kale and Ohad Shamir. Vol. 65. Proceedings of Machine Learning Research.

PMLR, pp. 1704ś1722 (cit. on p. 41).

Rashidinejad, Paria, Jiantao Jiao, and Stuart Russell (2020). “SLIP: Learning to predict in unknown

dynamical systems with long-term memory.ž In: Advances in Neural Information Processing

Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.

Curran Associates, Inc., pp. 5716ś5728 (cit. on p. 70).

Shalev-Shwartz, Shai and Yoram Singer (2007). “Online learning: Theory, algorithms, and applica-

tions.ž In: (cit. on p. 6).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. (2016).

“Mastering the game of Go with deep neural networks and tree search.ž In: nature 529.7587,

pp. 484ś489 (cit. on p. 1).

Simon, Dan (2006). Optimal state estimation: Kalman, H inőnity, and nonlinear approaches. John

Wiley & Sons (cit. on p. 70).

Srebro, Nathan, Karthik Sridharan, and Ambuj Tewari (2010). “Smoothness, low noise and fast

rates.ž In: Advances in neural information processing systems 23 (cit. on pp. 11, 67).

Steinhardt, J. and P. Liang (2014). “Adaptivity and Optimism: An Improved Exponentiated Gra-

dient Algorithm.ž In: International Conference on Machine Learning (ICML) (cit. on p. 27).

Telgarsky, Matus (2022). Stochastic linear optimization never overőts with quadratically-bounded

losses on general data (cit. on p. 44).

Tsiamis, Anastasios and George J Pappas (2022). “Online learning of the kalman őlter with loga-

rithmic regret.ž In: IEEE Transactions on Automatic Control (cit. on p. 70).

Veness, Joel, Martha White, Michael Bowling, and András György (2013). “Partition Tree Weight-

ing.ž In: 2013 Data Compression Conference, pp. 321ś330 (cit. on p. 83).

Vovk, Volodya (2001). “Competitive On-line Statistics.ž In: International Statistical Review 69.2,

pp. 213ś248. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.

2001.tb00457.x (cit. on pp. 69ś71, 182).

Yang, Tianbao, Lijun Zhang, Rong Jin, and Jinfeng Yi (2016). “Tracking Slowly Moving Clairvoyant:

Optimal Dynamic Regret of Online Learning with True and Noisy Gradient.ž In: Proceedings

of The 33rd International Conference on Machine Learning. Vol. 48. Proceedings of Machine

Learning Research. PMLR, pp. 449ś457 (cit. on pp. 19, 54).

Yuan, Jianjun and Andrew G. Lamperski (2019). “Trading-Off Static and Dynamic Regret in Online

Least-Squares and Beyond.ž In: CoRR abs/1909.03118. arXiv: 1909.03118 (cit. on p. 71).

Zhang, Jiujia and Ashok Cutkosky (2022). Parameter-free Regret in High Probability with Heavy

Tails (cit. on p. 22).

93

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2001.tb00457.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2001.tb00457.x
https://arxiv.org/abs/1909.03118

Zhang, Lijun, Shiyin Lu, and Zhi-Hua Zhou (2018). “Adaptive online learning in dynamic environ-

ments.ž In: Proceedings of the 32nd International Conference on Neural Information Processing

Systems, pp. 1330ś1340 (cit. on pp. 20, 24, 54, 57, 58, 60, 62, 64, 71, 75, 165).

Zhang, Zhiyu, Ashok Cutkosky, and Ioannis Paschalidis (2022a). “Adversarial Tracking Control via

Strongly Adaptive Online Learning with Memory.ž In: Proceedings of The 25th International

Conference on Artiőcial Intelligence and Statistics. Ed. by Gustau Camps-Valls, Francisco J. R.

Ruiz, and Isabel Valera. Vol. 151. Proceedings of Machine Learning Research. PMLR, pp. 8458ś

8492 (cit. on p. 40).

Ð (2022b). “PDE-Based Optimal Strategy for Unconstrained Online Learning.ž In: Proceedings of

the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri, Stefanie

Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of

Machine Learning Research. PMLR, pp. 26085ś26115 (cit. on p. 40).

Zhang, Zhiyu, Ashok Cutkosky, and Yannis Paschalidis (2023). “Unconstrained Dynamic Regret

via Sparse Coding.ž In: Advances in Neural Information Processing Systems. Ed. by A. Oh, T.

Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran Associates, Inc.,

pp. 74636ś74670 (cit. on pp. 40, 71, 75).

Zhang, Zhiyu, Heng Yang, Ashok Cutkosky, and Ioannis Ch. Paschalidis (2023). Improving Adaptive

Online Learning Using Reőned Discretization. arXiv: 2309.16044 [cs.LG] (cit. on pp. 40, 41).

Zhao, Peng, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou (2020). “Dynamic Regret of Convex

and Smooth Functions.ž In: Advances in Neural Information Processing Systems. Ed. by H.

Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,

pp. 12510ś12520 (cit. on pp. 39, 67, 71).

Ð (2024). “Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Con-

vex Optimization.ž In: Journal of Machine Learning Research 25.98, pp. 1ś52 (cit. on pp. 71,

75).

Zhou, Xingyu (2018). “On the fenchel duality between strong convexity and lipschitz continuous

gradient.ž In: arXiv preprint arXiv:1803.06573 (cit. on p. 8).

Zinkevich, Martin (2003). “Online convex programming and generalized inőnitesimal gradient as-

cent.ž In: Proceedings of the 20th international conference on machine learning (icml-03), pp. 928ś

936 (cit. on pp. 6, 20, 54).

94

https://arxiv.org/abs/2309.16044

Appendices

95

Appendix A

Part I (Foundations)

A.1 A Strong Mirror Descent Lemma

In this section we derive a regret template for Centered Mirror Descent which holds for arbitrary

sequences of loss functions and choices of ψt and φt. The result is analogous to the Strong FTRL

Lemma of McMahan (2017), but applies to a sequence of comparators and is tailored to mirror

descent-style analysis. Here we present a mild generalization of the lemma which incorporates the

post-hoc adjustments w̃t ≙Mt(wt).
In this section, the following short-hand notation will be convenient:

D̂f(x, y; gy) def
≙ f(x) − f(y) − ⟨gy, x − y⟩ .

where f is a subdifferentiable function and gy is an arbitrary element of ∂f(y). Note that when

f is differentiable, then ∂f(y) ≙ {∇f(y)}, so the short-hand reduces to the standard bregman

divergence. Moreover, observe that D̂ still satisőes the usual subgradient inequalities. For instance,

if f is convex, then for any gy ∈ ∂f(y) we have D̂f(x, y; gy) ≥ 0.
The following lemma provides a powerful regret equality for the centered mirror descent frame-

work, showing how each of the components of the update feature in the regret bound. We will use

this lemma to derive many of our results as special cases.

96

Lemma A.1.1. (Strong Centered Mirror Descent Lemma) For all t, let ℓt(⋅) be a subdif-

ferentiable function, φt(⋅) be a subdifferentiable non-negative function, and ψt(⋅) be a differentiable

non-negative function. Deőne ∆t(w) ≙Dψt+1(w∣w1) −Dψt(w∣w1), and

wt+1 ≙ argminw∈Rd ℓt(w) +Dψt(w∣wt) + (∆t +φt)(w).
Then, for all t there is some ∇ℓt(wt+1) ∈ ∂ℓt(wt+1) and ∇φt(wt+1) ∈ ∂φt(wt+1) such that ∇ℓt(wt+1) ≙
∇ψt(wt) −∇ψt+1(wt+1) −∇∆t(wt+1) −∇φt(wt+1), and for any u1, . . . , uT in R

d,

T

∑
t≙1

ℓt(w̃t) − ℓt(ut) ≙DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙1

φt(ut)
+

T

∑
t≙1

Dψt+1(ut∣w̃t+1) −Dψt+1(ut∣wt+1)´¹¹¹¸¹¹¶
≙∶ξt

+

T

∑
t≙2

⟨∇ψt(w̃t) −∇ψt(w̃1), ut−1 − ut⟩´¹¹¸¹¹¹¶
≙∶Pt

+

T

∑
t≙1

ℓt(w̃t) − ℓt(wt+1) −Dψt(wt+1∣w̃t) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¹¶
≙∶δt

T

∑
t≙1

−D̂ℓt+φt(ut,wt+1;∇ℓt(wt+1) +∇φt(wt+1))´¹¹¹¸¹¹¹¶
≙∶Lt

Observe that the lemma holds even for non-convex losses; in this case we’ll need to account for

the fact that the terms −D̂ℓt(ut,wt+1;∇ℓt(wt+1)) may be positive and may require additional effort

to control. When the losses are convex the terms −D̂ℓt(ut,wt+1;∇ℓt(wt+1)) can often be leveraged in

useful ways, particularly when the ℓt have nice properties such as strong convexity or exp-concavity.

We will typically only assume convexity of ℓt and drop these terms. Similarly, for simplicity we

assume that φt is convex so that we can bound −D̂φt(ut,wt+1;∇φt(wt+1)) ≤ 0. It’s possible that

this term could also be leveraged in some useful way, but we do not investigate this in the current

work.

Remark A.1.2. Note that Lemma A.1.1 captures constrained updates as a special case. In particular,

it can be shown that the constrained update is equivalent to an unconstrained one which includes

an indicator function in the composite penalty (see, e.g., Orabona 2019, Theorem 6.3, McMahan

2017, Section 2.4), that is,

argminw∈W ℓt(w) +Dψt(w∣wt) + (∆t +φt)(w) ≙
argminw∈Rd ℓt(w) +Dψt(w∣wt) + (∆t +φt)(w) + I(w ∈W).

Moreover, it is easy to see that the same regret bound holds; from Lemma A.1.1 we can see that

97

the effect of this addition in the regret guarantee is simply that ∑Tt≙1φt(ut) will contain factors of

I(ut ∈W) ≙ 0 for sequences u ≙ (u1, . . . , uT) in W .

Proof. (of Lemma A.1.1)

First, observe that the existence of the speciőed∇ℓt(wt+1) ∈ ∂ℓt(wt+1) and∇φt(wt+1) ∈ ∂φt(wt+1)
follows directly from the őrst order optimality conditions applied to the update wt+1 ≙ argminw ℓt(w)+
Dψt(w∣w̃t) +∆t(w) +φt(w).

Thus, using the notation D̂f(x, y; gy) ≙ f(x) − f(y) − ⟨gy, x − y⟩ for gy ∈ ∂f(y), we can write

T

∑
t≙1

ℓt(w̃t) − ℓt(ut) ≙ T

∑
t≙1

ℓt(wt+1) − ℓt(ut) + T

∑
t≙1

ℓt(w̃t) − ℓt(wt+1)
≙

T

∑
t≙1

⟨∇ℓt(wt+1),wt+1 − ut⟩ − D̂ℓt(ut,wt+1;∇ℓt(wt+1)) + T

∑
t≙1

ℓt(w̃t) − ℓt(wt+1)
(A.1)

Further, again by őrst order optimality conditions, we have:

∇ℓt(wt+1) +∇φt(wt+1) +∇∆t(wt+1) +∇ψt(wt+1) −∇ψt(w̃t) ≙ 0,
so the őrst summation can be witten as

T

∑
t≙1

⟨∇ℓt(wt+1),wt+1 − ut⟩ ≙ T

∑
t≙1

⟨∇ψt(w̃t) −∇ψt(wt+1),wt+1 − ut⟩ − ⟨∇∆t(wt+1) +∇φt(wt+1),wt+1 − ut⟩
(a)
≙

T

∑
t≙1

Dψt(ut∣w̃t) −Dψt(ut∣wt+1) −Dψt(wt+1∣w̃t)
+

T

∑
t≙1

⟨∇∆t(wt+1) +∇φt(wt+1), ut −wt+1⟩
(b)
≙

T

∑
t≙1

Dψt(ut∣w̃t) −Dψt(ut∣wt+1) −Dψt(wt+1∣w̃t)
+

T

∑
t≙1

∆t(ut) −∆t(wt+1) −D∆t(ut∣wt+1)
+

T

∑
t≙1

φt(ut) −φt(wt+1) − D̂φt(ut,wt+1;∇φt(wt+1)),
where (a) uses the well-known three-point relation of Bregman divergences ⟨∇f(a) −∇f(b), b − c⟩ ≙
Df(c∣a) −Df(c∣b) −Df(b∣a), and (b) observes that ⟨∇f(y), y − x⟩ ≙ f(y) − f(x) − D̂f(x, y,∇f(y))
for ∇f(y) ∈ ∂f(y), and that D̂∆t(x, y;∇∆t(y)) ≙ D∆t(x∣y) since ∆t is a differentiable function.

98

Plugging this back into Equation (A.1), and re-arranging terms, we have

T

∑
t≙1

ℓt(w̃t) − ℓt(ut) ≙ T

∑
t≙1

Dψt(ut∣w̃t) −Dψt(ut∣wt+1) + T

∑
t≙1

∆t(ut) −D∆t(ut∣wt+1)
+

T

∑
t≙1

φt(ut) + T

∑
t≙1

ℓt(w̃t) − ℓt(wt+1) −Dψt(wt+1∣w̃t) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¹¶
≙∶δt

+

T

∑
t≙1

−D̂ℓt(ut,wt+1;∇ℓt(wt+1)) − D̂φt(ut,wt+1;∇φt(wt+1))´¹¹¹¸¹¹¹¶
≙∶Lt

, (A.2)

So it remains to study the terms in the őrst line. We have

T

∑
t≙1

Dψt(ut∣w̃t) −Dψt(ut∣wt+1) +D∆t(ut∣wt+1) +∆t(ut)
≙

T

∑
t≙1

Dψt(ut∣w̃t) −Dψt(ut∣wt+1) +Dψt+1−ψt(ut∣wt+1) +Dψt+1(ut∣w̃1) −Dψt(ut∣w̃1)
≙

T

∑
t≙1

Dψt(ut∣w̃t) −Dψt+1(ut∣wt+1) +Dψt+1(ut∣w̃1) −Dψt(ut∣w̃1)

99

Add and subtract Dψt+1(ut∣w̃t+1):
≙

T

∑
t≙1

[Dψt(ut∣w̃t) −Dψt+1(ut∣w̃t+1)] + [Dψt+1(ut∣w̃t+1) −Dψt+1(ut∣wt+1)]´¹¹¸¹¹¹¶
≙∶ξt

+

T

∑
t≙1

[Dψt+1(ut∣w̃1) −Dψt(ut∣w̃1)]
≙ ξ1∶T +Dψ1

(u1∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙2

Dψt(ut∣w̃t) −Dψt(ut−1∣w̃t)
+DψT+1(uT ∣w̃1) −Dψ1

(u1∣w̃1) + T

∑
t≙2

Dψt(ut−1∣w̃1) −Dψt(ut∣w̃1)
≙ ξ1∶T +DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1)
+

T

∑
t≙2

ψt(ut) − ψt(ut−1) − ⟨∇ψt(w̃t), ut − ut−1⟩
+

T

∑
t≙2

ψt(ut−1) − ψt(ut) − ⟨∇ψt(w̃1), ut−1 − ut⟩
≙ ξ1∶T +DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1)

T

∑
t≙2

⟨∇ψt(w̃t) −∇ψt(w̃1), ut−1 − ut⟩´¹¹¸¹¹¹¶
Pt

.

Plugging this into Equation (A.2) yields the stated result:

T

∑
t≙1

ℓt(w̃t) − ℓt(ut) ≙DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙1

φt(ut) + ξ1∶T +P2∶T + δ1∶T +L1∶T

100

A.2 Proofs for Chapter 4 (Centered Mirror Descent)

A.2.1 Proof of Lemma 4.0.1

Lemma 4.0.1. (Centered Mirror Descent Lemma) Let ψt(⋅) be an arbitrary sequence of dif-

ferentiable non-negative convex functions, and assume that w1 ∈ argminw∈Rd ψt(w) for all t. Let

φt(⋅) be an arbitrary sequence of sub-differentiable non-negative convex functions. Then for any

u1, . . . , uT , Algorithm 2 guarantees

RT (u) ≤ ψT+1(uT) + T

∑
t≙1

φt(ut) + T

∑
t≙2

⟨∇ψt(wt) −∇ψt(w1), ut−1 − ut⟩´¹¹¸¹¹¶
≙∶Pt

+

T

∑
t≙1

⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¹¶
≙∶δt

, (4.1)

where gt ∈ ∂ℓt(wt).
Proof. From Lemma A.1.1 withMt(w) ≙ w for all t, we have have wt ≙ w̃t for all t and

T

∑
t≙1

ℓt(wt) − ℓt(ut) ≙DψT+1(uT ∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙1

φt(ut) + T

∑
t≙2

Pt +
T

∑
t≙1

δt +
T

∑
t≙1

Lt,

where

Pt ≙ ⟨∇ψt(wt) −∇ψt(w1), ut−1 − ut⟩
δt ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − (∆t +φt)(wt+1)
Lt ≙ −D̂ℓt(ut,wt+1;∇ℓt(wt+1)) − D̂φt(ut,wt+1;∇φt(wt+1)),

where gt ∈ ℓt(wt) and D̂f(x, y, gy) ≙ f(x) − f(y) − ⟨gy, x − y⟩ for subdifferentiable function f and

gy ∈ ∂f(y). Since ℓt(⋅) and φt(⋅) are convex, for any x, y ∈ Rd we have D̂ℓt(x, y;∇ℓt(y)) ≥ 0 for any

∇ℓt(y) ∈ ∂ℓt(y) and D̂φt(x, y;∇φt(y)) ≥ 0 for any ∇φt(y) ∈ ∂φt(y), so ∑Tt≙1Lt ≤ 0. Further, using

the assumption that w1 ∈ argminw∈Rd ψt(w) and ψt(w) ≥ 0 for all t, we have that ∇ψt(w1) ≙ 0 and

Dψt(w∣w1) ≤ ψt(w) for any w ∈ Rd. Using this along with the fact that Bregman divergences w.r.t

convex functions are non-negative yields

T

∑
t≙1

ℓt(wt) − ℓt(ut) ≤ ψT+1(uT) + T

∑
t≙2

⟨∇ψt(wt) −∇ψt(w1), ut−1 − ut⟩ + T

∑
t≙1

φt(ut) + T

∑
t≙1

δt

101

A.2.2 Proof of Lemma 4.0.2

Lemma 4.0.2. (Stability Lemma) Let ψt(w) ≙ Ψt(∥w∥) where Ψt ∶ R≥0 → R≥0 is a convex function

satisfying Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x ≥ 0. Let c > 0, Gmax ≥ 0, Gmax ≥ Gt, and

assume that there exists an x̊t ≥ 0 and 1/Gmax-Lipschitz convex function ηt ∶ R≥0 → R≥0 satisfying

ηt(0) ≙ 0 such that ∣Ψ′′′t (x)∣ ≤ 2η′t(x)(c+1)2Ψ′′t (x)2 for all x ≥ x̊t. Then for any wt+1,wt ∈W ,

δ̂t
def
≙ cGt ∥wt −wt+1∥ −Dψt(wt+1∣wt) − ηt(∥wt+1∥)G2

t ≤
(c + 1)2G2

t

2Ψ′′t (x̊t)
Proof. The proof follows using similar arguments to Jacobsen and Cutkosky (2022) with a few minor

adjustments to correct for the leading term c.

First, consider the case that the origin is contained in the line segment connecting wt and wt+1.

Then, there exists sequences ŵ1
t , ŵ

2
t . . . and ŵ1

t+1, ŵ
2
t+1 . . . such that limn→∞ ŵ

n
t ≙ wt, limn→∞ ŵ

n
t+1 ≙

wt+1 and 0 is not contained in the line segment connecting ŵnt and ŵnt+1 for all n. Since ψ is

twice differentiable everywhere except the origin, if we deőne δ̂
n

t ≙ Gt ∥ŵnt − ŵnt+1∥ −Dψt(ŵnt+1∣ŵnt) −
ηt(∥ŵnt+1∥)G2

t , then limn→∞ δ̂
n

t ≙ δ̂t. Thus, it suffices to prove the result for the case that the origin is

not contained in the line segment connecting wt and wt+1. The rest of the proof considers exclusively

this case.

For brevity denote δ̂t
def
≙ Gt ∥wt −wt+1∥−Dψt(wt+1∣wt)− ηt(∥wt+1∥) ∥gt∥2. Since the origin is not

in the line segment connecting wt and wt+1, ψt is twice differentiable on this line segment. Thus,

By Taylor’s theorem, there is a w̃ on the line connecting wt and wt+1 such that

Dψt(wt+1∣wt) ≙ 1

2
∥wt −wt+1∥2∇2ψt(w̃) ≥

1

2
∥wt −wt+1∥2Ψ′′t (∥w̃∥)

where the last line observes ψt(w) ≙ Ψt(∥w∥) and uses the regularity assumptions Ψ′′′t (x) ≤ 0, and

Ψ′t(x) ≥ 0 for x ≥ 0 to apply Lemma A.3.2. Hence,

δ̂t ≙ cGt ∥wt −wt+1∥ −Dψt(wt+1∣wt) − ηt(∥wt+1∥)G2
t

≤ cGt ∥wt −wt+1∥ − 1

2
∥wt −wt+1∥2Ψ′′t (∥w̃∥) − ηt(∥wt+1∥)G2

t

(a)
≤ cGt ∥wt −wt+1∥ − 1

2
∥wt −wt+1∥2Ψ′′t (∥w̃∥) − ηt(∥w̃∥)G2

t + η
′

t(∥w̃∥)G2
t ∥wt+1 − w̃∥

(b)
≤ (c + 1)Gt ∥wt −wt+1∥ − 1

2
∥wt −wt+1∥2Ψ′′t (∥w̃∥) − ηt(∥w̃∥)G2

t

(c)
≤
(c + 1)2G2

t

2Ψ′′t (∥w̃∥) − ηt(∥w̃∥)G2
t

102

where (a) uses convexity of ηt(x), (b) uses the Lipschitz assumption η′t(∥w̃∥) ≤ 1/Gt and the fact

that ∥w̃ −wt∥ ≤ ∥wt+1 −wt∥ for any w̃ on the line connecting wt and wt+1, and (c) uses Fenchel-Young

inequality. If ∥w̃∥ ≤ x̊t, then we have

(c + 1)2G2
t

2Ψ′′t (∥w̃∥) − ηt(∥w̃∥)G2
t ≤
(c + 1)2G2

t

2Ψ′′t (x̊t) ,
which follows from the fact that Ψ′′′t (x) ≤ 0 implies Ψ′′t (x) is non-increasing in x, and hence

Ψ′′t (∥w̃∥) ≥ Ψ′′t (x̊t). Otherwise, if ∥w̃∥ ≥ x̊t, we have by assumption that
∣Ψ′′′t (x)∣
Ψ′′t (x)2 ≙

−Ψ′′′t (x)
Ψ′′t (x)2 ≙

d
dx

1
Ψ′′t (x) ≤

2η′t(x)(c+1)2 for any x ≥ x̊t, so integrating from x̊t to ∥w̃∥ we have

1

Ψ′′t (∥w̃∥) −
1

Ψ′′t (x̊t) ≤
2(c + 1)2 ∫

∥w̃∥
x̊t

η′t(x)dx,
so:

1

Ψ′′t (∥w̃∥) ≤
1

Ψ′′t (x̊t) +
2(c + 1)2 ∫

∥w̃∥
x̊t

η′t(x)dx
≤

1

Ψ′′t (x̊t) +
2(c + 1)2 ∫

∥w̃∥
0

η′t(x)dx
≙

1

Ψ′′t (x̊t) +
2ηt(∥w̃∥)(c + 1)2 ,

and hence,

(c + 1)2G2
t

2Ψ′′t (∥w̃∥) − ηt(∥w̃∥)G2
t ≤
(c + 1)2G2

t

2Ψ′′t (x̊t) +
(c + 1)2G2

t

2

2(c + 1)2 ηt(∥w̃∥) − ηt(∥w̃∥)G2
t

≙
(c + 1)2G2

t

2Ψ′′t (x̊t) + ηt(∥w̃∥)G2
t − ηt(∥w̃∥)G2

t

≙
(c + 1)2G2

t

2Ψ′′t (x̊t) ,
so in either case we have

δ̂t ≙ Gt ∥wt −wt+1∥ −Dψt(wt+1∣wt) − ηt(∥wt+1∥)G2
t

≤
(c + 1)2G2

t

2Ψ′′t (x̊t) .

103

A.2.3 Proof of Lemma 4.1.1

Lemma 4.1.1. For all t let ψt ∶ W → R be differentiable convex functions, φt ∶ W → R be subdif-

ferentiable convex functions, and let Mt ∶ W → W be arbitrary mappings. Then for any sequence

u ≙ (u1, . . . , uT) in W , Algorithm 2 guarantees

RT (u) ≤DψT+1(uT ∣w̃1) −DψT+1(uT ∣w̃T+1) + T

∑
t≙1

φt(ut)
+

T

∑
t≙2

⟨∇ψt(w̃t) −∇ψt(w̃1), ut−1 − ut⟩´¹¹¸¹¹¹¶
≙∶Pt

+

T

∑
t≙1

Dψt+1(ut∣w̃t+1) −Dψt+1(ut∣wt+1)´¹¹¹¸¹¹¶
ξt

+

T

∑
t≙1

⟨gt, w̃t −wt+1⟩ −Dψt(wt+1∣w̃t) − (∆t +φt)(wt+1)´¹¹¹¸¹¹¶
≙∶δt

,

where gt ∈ ∂ℓt(w̃t).
Proof. The proof follows immediately from the general regret equality of Lemma A.1.1 by bounding

ℓt(w̃t)−ℓt(wt+1) ≤ ⟨gt, w̃t −wt+1⟩ for gt ∈ ∂ℓt(w̃t) and observing that the terms ∑Tt≙1 − ≤ 0 for convex

ℓt and φt. Note that the result is valid even in constrained settings by including the indicator

function I(w ∈W) in φt, as discussed in Remark A.1.2.

A.3 Supporting Lemmas

In this section we collect the miscellaneous supporting lemmas used in our proofs.

Lemma A.3.1. (Orabona and Pál 2021, Lemma 23) Let f ∶ R → R and g ∶ Rd → R be deőned as

g(x) ≙ f(∥x∥). If f is twice differentiable at ∥x∥ and ∥x∥ > 0 then

min{g′′(∥x∥), g′(∥x∥)∥x∥ } I ⪯ ∇2g(x) ⪯max{g′′(∥x∥), g′(∥x∥)∥x∥ } I

Lemma A.3.2. Under the same assumptions as Lemma A.3.1, further suppose that f ′(x) is concave

and non-negative. If f is twice-differentiable at ∥x∥ and ∥x∥ > 0, then

∇
2g(x) ⪰ f ′′(∥x∥)I

104

Proof. Apply Lemma A.3.1,

∇
2g(x) ⪰ Imin{f ′′(∥x∥), f ′(∥x∥)∥x∥ } ,

and use the fact that f ′(x) is concave and f ′(x) ≥ 0 to bound

f ′(∥x∥)∥x∥ ≥
f ′(0) + f ′′(∥x∥)(∥x∥ − 0)∥x∥ ≥ f ′′(∥x∥).

The following lemma is common in adaptive online learning and provided for completeness.

Lemma A.3.3. Let a1, . . . , aT be arbitrary non-negative numbers in R. Then

¿ÁÁÀ T

∑
t≙1

at ≤
T

∑
t≙1

at√
∑ts≙1 as

≤ 2

¿ÁÁÀ T

∑
t≙1

at

Proof. By concavity of x↦
√
x, we have

√
a1∶t −

√
a1∶t−1 ≥

at

2
√
a1∶t

,

so summing over t and observing the resulting telescoping sum yields

T

∑
t≙1

at√
a1∶t
≤ 2

T

∑
t≙1

√
a1∶t −

√
a1∶t−1 ≙ 2

√
a1∶T .

For the lower bound, observe that

T

∑
t≙1

at√
a1∶t
≥

T

∑
t≙1

at√
a1∶T

≙
a1∶T√
a1∶T

≙
√
a1∶T

The following lemma shows that we can bound sums of the form ∑Tt≙1 ∥gt∥2∥g∥2
1∶t log

2(∥g∥2
1∶t/G2) by a

constant.

Lemma A.3.4. Let Vt ≥ 4G
2
+∑t−1s≙1 ∥gs∥2 where G ≥ ∥gt∥ for all t. Then

T

∑
t≙1

∥gt∥2
Vt log

2(Vt/G2) ≤ 2

105

Proof. Let c ≥ 4 and Vt ≙ cG
2
+∥g∥21∶t−1. We apply the integral bound∑Tt≙1 atf(∑ti≙0 at) ≤ ∫ ∑ts≙0 asa0

f(x)dx
for non-increasing f (Orabona 2019, Lemma 4.13) to get

T

∑
t≙1

∥gt∥2
Vt log

2(Vt/G2) ≤
T

∑
t≙1

∥gt∥2
((c − 1)G2 + ∥g∥21∶t) log2 ((c−1)G2+∥g∥2

1∶t

G2)
≤ ∫

(c−1)G2
+∥g∥2

1∶T

(c−1)G2

1

x log2(x/G2)dx ≙ −2

log (x/G2) ∣
(c−1)G2

+∥g∥2
1∶T

x≙(c−1)G2

≤
2

log (c − 1) ≤ 2,
where the last line uses log (c − 1) ≥ log (3) ≥ 1.

106

Appendix B

Part II (Adaptivity in Stationary

Settings)

B.1 Details for Chapter 6

B.1.1 Proofs for Section 6.1 (Parameter-free Learning)

Proof of Theorem 6.1.1

Theorem 6.1.1. Let ℓ1, . . . , ℓT be G-Lipschitz convex functions and gt ∈ ∂ℓt(wt) for all t. Let ϵ > 0,

k ≥ 3, Vt ≙ 4G
2
+ ∥g∥21∶t−1, and αt ≙

ϵG√
Vt log

2(Vt/G2) . For all t, set

ψt(w) ≙ k∫ ∥w∥
0

min
η≤1/G [log (x/αt + 1)η

+ ηVt]dx.
Then for all u ∈ Rd, Algorithm 3 guarantees

RT (u) ≤ 4Gϵ + 2k ∥u∥max{√VT+1 log (∥u∥ /αT+1 + 1),G log (∥u∥ /αT+1 + 1)}

Proof. First, let us derive the update formula, which can be seen in Algorithm 3. By őrst-order

optimality conditions for wt+1 ≙ argminw∈Rd ⟨gt,w⟩ +Dψt(w∣wt) +∆t(w) we have:

gt +∇ψt(wt+1) −∇ψt(wt) +∇∆t(wt+1) ≙ 0

107

Expanding the deőnition of ∆t(w) ≙ ψt+1(w) − ψt(w), we obtain:

gt +∇ψt+1(wt+1) −∇ψt(wt) ≙ 0,
and unrolling the recursion we have

∇ψt+1(wt+1) ≙ ∇ψt(wt) − gt ≙ ∇ψt−1(wt−1) − gt−1 − gt ≙ . . . ≙ −g1∶t.
Inspecting the equation for ψt+1 then yields:

wt+1∥wt+1∥Ψ′t+1(∥wt+1∥) ≙ −g1∶t
where we deőne the function

Ψ′t+1(x) ≙ k min
η≤1/G [log (x/αt+1 + 1)η

+ ηVt+1]
≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
Vt+1 log (x/αt+1 + 1) if G

√
log (x/αt+1 + 1) ≤√Vt+1

kG log (x/αt+1 + 1) + kVt+1
G

otherwise.

From this, we immediately see that wt+1 ≙ x
−g1∶t∥g1∶t∥ for some constant x that satisőes:

Ψ′t+1(x) ≙ ∥g1∶t∥
Now we see that one of two cases occurs: either

Ψ′t+1(x) ≙ 2k√Vt+1 log (x/αt+1 + 1),
which holds when 1

G
≥
√
log (x/αt+1 + 1) /Vt+1, or alternatively we have

Ψ′t+1(x) ≙ kG log (x/αt+1 + 1) + kVt+1
G

which holds when 1
G
≤
√
log (x/αt+1 + 1) /Vt+1. Observe that at the boundary value where 1

G
≙√

log (x/αt+1 + 1) /Vt+1 we have

Ψ′t+1(x) ≙ 2k√Vt+1 log (x/αt+1 + 1) ≙ 2kVt+1

G
.

108

Using this, we consider two cases. First, if ∥g1∶t∥ ≤ 2kVt+1
G

, then we have

2k
√
Vt+1 log (∥wt+1∥ /αt+1 + 1) ≙ ∥g1∶t∥

∥wt+1∥ ≙ αt+1 [exp(∥g1∶t∥2
4k2Vt+1

) − 1] .
On the other hand, if ∥g1∶t∥ ≥ 2kVt+1

G
then

kG log (∥wt+1∥ /αt+1 + 1) + kVt+1
G
≙ ∥g1∶t∥

∥wt+1∥ ≙ αt+1 [exp(∥g1∶t∥
kG

−
Vt+1

G2
) − 1] .

Putting these cases together yields the update described in Algorithm 3 (with k ≙ 3, which is

important later in the regret analysis).

Now, we concentrate on proving the regret bound.

For brevity we deőne the function Ft(x) ≙ log (x/αt + 1). Recall that we have set Ψ′t(x) ≙
kminη≤1/G [Ft(x)η

+ ηVt] so that Ψt(x) ≙ k ∫ x0 minη≤1/G [Ft(z)η + ηVt]dz and ψt(w) ≙ Ψt(∥w∥), and

ϕt(w) ≙∆t(w) ≙ Ψt+1(∥w∥) −Ψt(∥w∥). We have by Lemma 4.0.1 that

RT (u) ≤ ψT+1(u) + T

∑
t≙1

δt

(a)
≤ ∥u∥Ψ′T+1(∥u∥) + T

∑
t≙1

δt

(b)
≤ 2k ∥u∥max{√VT+1 log (∥u∥ /αT+1 + 1),G log (∥u∥ /αT+1 + 1)} + T

∑
t≙1

δt

where (a) observes that Ψ′T+1(x) is non-decreasing in x, so

ψT+1(u) ≙ ∫ ∥u∥
0

Ψ′T+1(x)dx ≤ ∫ ∥u∥
0

dxΨ′T+1(∥u∥) ≙ ∥u∥Ψ′t(∥u∥),
and (b) observes that Vt/G ≤ GFt(x) whenever Ψ′t(x) ≙ kGFt(x) + kVt

G
and hence

Ψ′T+1(∥u∥) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VT+1FT+1(∥u∥) if G

√
FT+1(∥u∥) ≤√VT+1

kGFT+1(∥u∥) + kG
VT+1

otherwise

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VT+1FT+1(∥u∥) if G

√
FT+1(∥u∥) ≤√VT+1

2kGFT+1(∥u∥) otherwise

≙ 2kmax{√VT+1FT+1(∥u∥),GFT+1(∥u∥)} .
109

Thus, we need only bound the stability terms ∑Tt≙1 δt, which we will handle using the Stability

Lemma (Lemma 4.0.2).

For any x > 0, we have

Ψ′t(x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VtFt(x) if G

√
Ft(x) ≤√Vt

kGFt(x) + kVt
G

otherwise

Ψ′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k
√
Vt(x+αt)√Ft(x) if G

√
Ft(x) ≤√Vt

kG
x+αt

otherwise

Ψ′′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2 if G
√
Ft(x) ≤√Vt

−kG(x+αt)2 otherwise
.

Clearly Ψt(x) ≥ 0, Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, Ψ′′′t (x) ≤ 0 for all x > 0. Moreover, observe that for any

x > αt(e − 1) ≙∶ x0, we have

∣Ψ′′′t (x)∣
Ψ′′t (x)2 ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2
(x+αt)2Ft(x)

k2Vt
if G
√
Ft(x) ≤√Vt

kG(x+αt)2
(x+αt)2
k2G2 otherwise

≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2k
√
Vt
(1√

Ft(x) + 2
√
Ft(x)) if G

√
Ft(x) ≤√Vt

1
kG

otherwise

Now, since x > αt(e − 1), we have Ft(x) > 1 so that 1√
Ft(x) ≤

√
Ft(x). Thus:

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
2k

√
Ft(x)
Vt

if G
√
Ft(x) ≤√Vt

1
kG

otherwise

≤
1

2
min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

G

⎫⎪⎪⎬⎪⎪⎭ ≙
1

2
η′t(x),

where the last line deőnes ηt(x) ≙ ∫ x0 min{√Ft(v)
Vt

, 1
G
}dv and uses k ≥ 3. We also have η′t(x) ≙

min{√Ft(x)
Vt

, 1
G
} ≤ 1

G
, and η′t(x) is monotonic, so ηt(x) is convex and 1/G Lipschitz. Hence, by

Lemma 4.0.2 we have

δ̂t ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ηt(∥wt+1∥) ∥gt∥2 ≤ 2 ∥gt∥2
Ψ′′t (x0) (B.1)

with x0 ≙ αt(e − 1).

110

Next, we want to show that ϕt(w) ≙∆t(w) ≥ ηt(∥w∥) ∥gt∥2, so that δt ≤ δ̂t. To this end, let x > 0

and observe that for αt+1 ≤ αt, we have Ft+1(x) ≙ log (x/αt+1 + 1) ≥ log (x/αt + 1) ≙ Ft(x), so

Ψ′t+1(x) −Ψ′t(x) ≙ kmin
η≤ 1

G

[Ft+1(x)
η

+ ηVt+1] − kmin
η≤ 1

G

[Ft(x)
η
+ ηVt]

≥ kmin
η≤ 1

G

[Ft(x)
η
+ ηVt+1] − kmin

η≤ 1

G

[Ft(x)
η
+ ηVt] ,

and using the fact that for any η ≤ 1/G we can bound
Ft(x)
η
+ ηVt+1 ≙

Ft(x)
η
+ ηVt + η ∥gt∥2 ≥

minη∗≤1/G [Ft(x)η∗
+ η∗Vt] + η ∥gt∥2, we have

≥ k ∥gt∥2min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt+1

,
1

G

⎫⎪⎪⎬⎪⎪⎭ + kmin
η≤ 1

G

[Ft(x)
η
+ ηVt] − kmin

η≤ 1

G

[Ft(x)
η
+ ηVt]

≙ k ∥gt∥2min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt+1

,
1

G

⎫⎪⎪⎬⎪⎪⎭ ≥
k√
2
∥gt∥2min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

G

⎫⎪⎪⎬⎪⎪⎭ ≥ ∥gt∥
2
η′t(x),

where the last line uses k ≥ 3 and 1
Vt
≙

1
Vt+1

Vt+1
Vt
≙

1
Vt+1
(1 + ∥gt∥2 /Vt) ≤ 2

Vt+1
for Vt ≥ ∥gt∥2. From this,

we immediately have

∆t(w) ≙ ∫ ∥w∥
0

Ψ′t+1(x) −Ψ′t(x)dx ≥ ∥gt∥2∫ ∥w∥
0

η′t(x)dx ≙ ηt(∥w∥) ∥gt∥2 ,
and hence

δt ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1)
≤ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ηt(∥wt+1∥) ∥gt∥2 ≙ δ̂t ≤ 2 ∥gt∥2

Ψ′′t (x0)
for x0 ≙ αt(e − 1) via Equation (B.1). Summing over t then yields

T

∑
t≙1

δt ≤
T

∑
t≙1

2 ∥gt∥2
Ψ′′t (αt(e − 1)) ≤

T

∑
t≙1

2eαt

k
∥gt∥2

√
Ft(αt(e − 1))

Vt

≤

T

∑
t≙1

2eαt

k
∥gt∥2 1√

Vt
≤

T

∑
t≙1

6

k

αt ∥gt∥2√
Vt

(a)
≤ 2Gϵ

T

∑
t≙1

∥gt∥2
Vt log

2(Vt/G2)
(b)
≤ 4Gϵ

where (a) chooses αt ≙
ϵG√

Vt log
2(Vt/G2) and recalls k ≥ 3, and (b) recalls Vt ≙ 4G

2
+ ∥g∥21∶t−1 and uses

111

Lemma A.3.4 to bound ∑Tt≙1 ∥gt∥2
Vt log

2(Vt/G2) ≤ 2. Returning to our regret bound we have

RT (u) ≤ 2k ∥u∥max{√VT+1 log (∥u∥ /αT+1 + 1),G log (∥u∥ /αT+1 + 1)} + T

∑
t≙1

δt

≤ 4Gϵ + 2k ∥u∥max{√VT+1 log (∥u∥ /αT+1 + 1),G log (∥u∥ /αT+1 + 1)}
≤ Ô

⎛⎜⎜⎜⎝
Gϵ + ∥u∥

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÁÀ∥g∥21∶T log
⎛⎜⎝
∥u∥√∥g∥21∶T

ϵG
+ 1
⎞⎟⎠ ∨G log

⎛⎜⎝
∥u∥√∥g∥21∶T

ϵG
+ 1
⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎠

B.1.2 Proofs for Section 6.3 (Adapting to Gradient Variability)

Proof of Theorem 6.3.1

Theorem 6.3.1. Let ℓ1, . . . , ℓT and ℓ̂1, . . . , ℓ̂T be G-Lipschitz convex functions. Let ϵ > 0, k ≥ 3, and

for all t set V̂ t ≙ 16G
2
+∑t−1s≙1 ∥∇ℓs(ws) −∇ℓ̂s(ws)∥2, α̂t ≙ ϵG√

V̂ t log
2(V̂ t/G2) , and

ψt(w) ≙ k∫ ∥w∥
0

min
η≤ 1

2G

[log (x/α̂t + 1)
η

+ ηV̂ t]dx.
Then for all u ∈ Rd, Algorithm 5 guarantees

RT (u) ≤ 4ϵG + 2k ∥u∥max{√V̂ t log (∥u∥ /α̂T+1 + 1),2G log (∥u∥ /α̂T+1 + 1)}
Proof. The proof follows similar steps to Theorem 6.1.1. Let gt ∈ ℓt(wt) and let ht ∈ ∂ℓ̂t(wt) be

the subgradient of ℓ̂t(wt) for which the őrst-order optimality condition ht +∇ψt(wt) −∇ψt(xt) ≙ 0
holds. Then

T

∑
t≙1

⟨gt,wt − u⟩ ≙ T

∑
t≙1

⟨gt, xt+1 − u⟩ + ⟨gt,wt − xt+1⟩
≙

T

∑
t≙1

⟨gt, xt+1 − u⟩ + ⟨ht,wt − xt+1⟩ + ⟨gt − ht,wt − xt+1⟩ .

112

Following the same steps as Lemma 4.0.1 we have

T

∑
t≙1

⟨gt, xt+1 − u⟩ ≤DψT+1(u∣x1) −DψT+1(u∣xT+1) + T

∑
t≙1

−Dψt(xt+1∣xt) − ϕt(xt+1)
≤ ψT+1(u) + T

∑
t≙1

−Dψt(xt+1∣xt) − ϕt(wt+1),
where the last line observes argminx∈Rd ψT+1(x) ≙ ψT+1(x1) ≙ 0, so DψT+1(u∣x1) ≙ ψT+1(u) and

−DψT+1(u∣xT+1) ≤ 0. Similarly, from the őrst-order optimality condition for wt we have

T

∑
t≙1

⟨ht,wt − xt+1⟩ ≙ T

∑
t≙1

⟨∇ψt(wt) −∇ψt(xt),wt − xt+1⟩
≙

T

∑
t≙1

Dψt(xt+1∣xt) −Dψt(xt+1∣wt)−Dψt(wt∣xt)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

≤

T

∑
t≙1

Dψt(xt+1∣xt) −Dψt(xt+1∣wt)
where the second line applies the three-point relation for Bregman divergences:

⟨∇f(y) −∇f(x), x − z⟩ ≙Df(z∣y) −Df(z∣x) −Df(x∣y).
Combining these two observations yields

RT (u) ≤ ψT+1(u) + T

∑
t≙1

⟨gt − ht,wt − xt+1⟩ −Dψt(xt+1∣wt) − ϕt(xt+1)´¹¹¸¹¹¹¶
≙∶δt

To bound δt, deőne ĝt ≙ ∇ℓt(wt) − ∇ℓ̂t(wt), Ĝ ≙ 2G, V̂ t ≙ 4Ĝ
2
+∑t−1s≙1 ∥ĝs∥2, α̂t ≙ ϵG√

V̂ t log
2(V̂ t/G2) ,

and observe that ψt(w) ≙ k ∫ ∥w∥0 minη≤1/Ĝ [log(x/α̂t+1)η
+ ηV̂ t]dx is equivalent to the regularizer from

Theorem 6.1.1. Hence, borrowing the arguments of Theorem 6.1.1, we can bound ∑Tt≙1 δt ≤ 4ϵG.

Returning to our regret bound, we have

RT (u) ≤ ψT+1(u) + 4ϵG (a)≤ 4ϵG + ∥u∥Ψ′T+1(∥u∥)
(b)
≤ 4ϵG + 2k ∥u∥max{√V̂ t log (∥u∥ /α̂T+1 + 1),2G log (∥u∥ /α̂T+1 + 1)}

113

where (a) deőnes

Ψ′T+1(x) ≙ k min
η≤1/2G [log (x/α̂T+1 + 1)η

+ ηV̂ T+1]
≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
V̂ T+1 log (x/α̂T+1 + 1) if 2G

√
log (x/α̂T+1 + 1) ≤√V̂ T+1

2kG log (x/α̂T+1 + 1) + kV̂ T+1
2G

otherwise

and observes that ψT+1(u) ≙ ∫ ∥u∥0 Ψ′t(x)dx ≤ ∥u∥Ψ′t(∥u∥) since Ψ′t is non-decreasing in its argument,

and (b) observes that the case Ψ′t(x) ≙ 2kG log (x/α̂T+1 + 1) + kV̂ T+1
2G

, coincides with V̂ T+1/2G ≤√
V̂ T+1 log (x/α̂T+1 + 1) ≤ 2G log (x/α̂T+1 + 1), so

Ψ′T+1(x) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
V̂ T+1 log (x/α̂T+1 + 1) if 2G

√
log (x/α̂T+1 + 1) ≤√V̂ T+1

4kG log (x/α̂T+1 + 1) otherwise

≙ 2kmax{√V̂ T+1 log (x/α̂T+1 + 1),2G log (x/α̂T+1 + 1)}

B.1.3 Proofs for Section 6.2 (Lipschitz Adaptivity and Scale-free Learning)

Proof of Theorem 6.2.1

The complete theorem is stated below.

Theorem 6.2.1. Let ℓ1, . . . , ℓT be G-Lipschitz convex functions and gt ∈ ∂ℓt(wt) for all t. Let

h1 ≤ . . . ≤ hT be a sequence of hints such that ht ≥ ∥gt∥, and assume that ht is provided at the start

of each round t. Let ϵ > 0, k ≥ 3, Vt ≙ 4h
2
t + ∥g∥21∶t−1, Bt ≙ 4∑ts≙1 (4 +∑s−1s′≙1

∥gs′∥2
h2
s′
), αt ≙ ϵ√

Bt log
2(Bt) ,

and set

ψt(w) ≙ k∫ ∥w∥
0

min
η≤ 1

ht

[log (x/αt + 1)
η

+ ηVt]dx.
Then for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ 4ϵhT + 2k ∥u∥max

⎧⎪⎪⎨⎪⎪⎩
¿ÁÁÀVT+1 log(∥u∥

√
BT+1 log

2 (BT+1)
ϵ

+ 1),
hT log(∥u∥√BT+1 log2 (BT+1)

ϵ
+ 1)⎫⎪⎪⎬⎪⎪⎭

114

Proof. The proof follows similar steps to Theorem 6.1.1. We have via Lemma 4.0.1 that

RT (u) ≤ ψT+1(u) + T

∑
t≙1

⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1)´¹¹¹¸¹¹¹¶
≙∶δt

,

so the main challenge is to bound the stability terms ∑Tt≙1 δt, which we focus on őrst.

Let Ft(w) ≙ log (x/αt + 1) and deőne

Ψt(x) ≙ k∫ x

0
min
η≤1/ht [Ft(x)η + ηVt]dx,

so that ψt(w) ≙ Ψt(∥w∥), and observe that

Ψ′t(x) ≙ kmin
1/ht [Ft(x)η + ηVt]

≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VtFt(x) if ht

√
Ft(x) ≤√Vt

khtFt(x) + kVt
ht

otherwise

Ψ′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k
x+αt

√
Vt

Ft(x) if ht
√
Ft(x) ≤√Vt

kht
x+αt

otherwise

Ψ′′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2 if ht
√
Ft(x) ≤√Vt

−kht(x+αt)2 otherwise.

Hence, Ψt(x) ≥ 0, Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x > 0. Moreover, for any x >

αt(e − 1) def
≙ x0 we have

−
Ψ′′′t (x)
Ψ′′t (x)2 ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k
√
Vt(1+2Ft(x))

2(x+αt)Ft(x)3/2
(x+αt)2Ft(x)

k2Vt
if ht
√
Ft(x) ≤√Vt

kht(x+αt)2
(x+αt)2
k2h2t

otherwise

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2k
√
Vt
(1√

Ft(x) + 2
√
Ft(x)) if ht

√
Ft(x) ≤√Vt

1
kht

otherwise,

115

and since x > x0, we have
√
Ft(x) > 1 and 1√

Ft(x) ≤
√
Ft(x), hence

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
2k

√
Ft(x)
Vt

if ht
√
Ft(x) ≤√Vt

1
kht

otherwise

≤
1

2
min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

ht

⎫⎪⎪⎬⎪⎪⎭
≙
1

2
η′t(x),

for k ≥ 3 and ηt(x) ≙ ∫ ∥w∥0 min{√Ft(x)
Vt

, 1
ht
}dx. Notice that ηt is convex and 1/ht Lipschitz with

ht ≥ ∥gt∥. Hence, Ψt satisőes the conditions of Lemma 4.0.2 with x0 ≙ αt(e − 1), so

δ̂t ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ηt(∥wt+1∥) ∥gt∥2 ≤ 2 ∥gt∥2
Ψ′′t (x0) . (B.2)

Next, we want to show that δt ≤ δ̂t, which will follow if we can show that ∆t(w) ≥ ηt(∥w∥) ∥gt∥2 for

any w. Observe that for any x > 0 we have

Ψ′t+1(x) −Ψ′t(x) ≙ k min
η≤ 1

ht+1

[Ft+1(x)
η

+ ηVt+1] − kmin
η≤ 1

ht

[Ft(x)
η
+ ηVt]

≥ kmin
η≤ 1

ht

[Ft+1(x)
η

+ ηVt+1] − kmin
η≤ 1

ht

[Ft(x)
η
+ ηVt] .

Now observe that for any η ≤ 1/ht, if we deőne ∆h ≙ 4h2t+1 − 4h
2
t , it holds that

Ft+1(x)
η
+ ηVt+1 ≥

Ft+1(x)
η
+ ηVt + η(∆h + ∥gt∥2) ≥minη∗≤1/ht [Ft+1(x)η∗

+ η∗Vt] + η(∆h + ∥gt∥2), which yields

≥ k(∆h + ∥gt∥2)min

⎧⎪⎪⎨⎪⎪⎩
√

Ft+1(x)
Vt+1

,
1

ht

⎫⎪⎪⎬⎪⎪⎭ + kmin
η≤ 1

ht

[Ft+1(x)
η

+ ηVt] − kmin
η≤ 1

ht

[Ft(x)
η
+ ηVt]

(a)
≥ k(∆h + ∥gt∥2)min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt+1

,
1

ht

⎫⎪⎪⎬⎪⎪⎭ + kmin
η≤ 1

ht

[Ft(x)
η
+ ηVt] − kmin

η≤ 1

ht

[Ft(x)
η
+ ηVt]

≙ k(∆h + ∥gt∥2)min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt+1

,
1

ht

⎫⎪⎪⎬⎪⎪⎭
(b)
≥

k√
2
∥gt∥2min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

ht

⎫⎪⎪⎬⎪⎪⎭
≥ ∥gt∥2min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

ht

⎫⎪⎪⎬⎪⎪⎭ ≙ η
′

t(x) ∥gt∥2 ,
where (a) uses that αt+1 ≤ αt so Ft+1(x) ≙ log (x/αt+1 + 1) ≥ log (x/αt + 1) ≙ Ft(x). For inequality

116

(b), observe that:

∆h + ∥gt∥2√
Vt+1

≙
∆h + ∥gt∥2√
Vt +∆h + ∥gt∥2

≥ inf
∆h

∆h + ∥gt∥2√
Vt +∆h + ∥gt∥2

≥
∥gt∥2√
Vt + ∥gt∥2

≙
∥gt∥2√
Vt

¿ÁÁÀ Vt

Vt + ∥gt∥2
Observing that ∥gt∥ ≤ ht and Vt ≥ 4h

2
t :

≥
∥gt∥2√
2Vt

From this we immediately have

∆t(w) ≙ ∫ ∥w∥
0

Ψ′t+1(x) −Ψ′t(x)dx ≥ ∥gt∥2∫ ∥w∥
0

η′t(x)dx ≙ ηt(∥w∥) ∥gt∥2 ,
so combining this with Equation (B.2), we have

δt ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1)
≤ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ηt(∥wt+1∥) ∥gt∥2
≙ δ̂t ≤

2 ∥gt∥2
Ψ′′t (x0) ≙

2αte ∥gt∥2
k
√
Vt

≤
2αt ∥gt∥2√

Vt

for k ≥ 3. Returning to our regret bound, we have

RT (u) ≤ ψT+1(u) + T

∑
t≙1

δt ≤ ψT+1(u) + 2 T

∑
t≙1

αt ∥gt∥2√
Vt

(a)
≤ ∥u∥Ψ′T+1(∥u∥) + 2 T

∑
t≙1

αt ∥gt∥2√
Vt

(b)
≤ 2k ∥u∥max{√VT+1 log (∥u∥ /αT+1 + 1), hT+1 log (∥u∥ /αT+1 + 1)}
+ 2

T

∑
t≙1

αt ∥gt∥2√
Vt

(B.3)

117

where (a) observes that Ψ′t(x) is increasing in x, so

ψT+1(u) ≙ ∫ ∥u∥
0

Ψ′T+1(x)dx ≤ Ψ′t(∥u∥)∫ ∥u∥
0

dx ≙ ∥u∥Ψ′t(∥u∥),
and (b) observes that the case Ψ′t(x) ≙ khtFt(x) + kVt

ht
coincides with Vt

ht
≤ htFt(x), so

Ψ′T+1(∥u∥) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VT+1FT+1(∥u∥) if hT+1

√
FT+1(∥u∥) ≤√VT+1

khT+1FT+1(∥u∥) + kVT+1
hT+1

otherwise

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VT+1FT+1(∥u∥) if hT+1

√
FT+1(∥u∥) ≤√VT+1

2khT+1FT+1(∥u∥) otherwise

≙ 2kmax{√VT+1FT+1(∥u∥), hT+1FT+1(∥u∥)} .
Note that the regret does not depend on gT+1, so without loss of generality we can assume gT+1 ≙ gT

and hence hT+1 ≙ hT . Finally, Lemma B.1.1 bounds 2∑Tt≙1 αt∥gt∥
2√

Vt
≤ 4ϵhT , so plugging this into

Equation (B.3) yields the stated result. Notice that Lemma B.1.1 is responsible for removing

the “range-ratiož problem addressed by Mhammedi and Koolen 2020 via a doubling-like restart

scheme.

Lemma B.1.1. Let c ≥ 4, Vt ≙ ch
2
t + ∥g∥21∶t−1, Bt ≙ c∑ts≙1 (4 +∑s−1s′≙1

∥gs′∥2
h2
s′
) and set αt ≙

ϵ√
Bt log

2(Bt) .
Then

T

∑
t≙1

αt ∥gt∥2√
Vt

≤ 2ϵhT .

Proof. Deőne τ1 ≙ 1 and τt ≙max{t′ ∶ t′ ≤ t and ∑t′−1s≙1
∥gs∥2
h2s
+ 4 <

h2
t′

h2τ
t′−1

} for t > 1. Then, we partition

[1, T ∥ into the disjoint intervals [1, T ∥ ≙ I1∪ . . .∪IN over which τt is őxed. Denote Ij ≙ [τ̃ j , τ̃ j+1−1∥
where τ̃1 ≙ 1, τ̃N+1 ≙ T + 1, and τ̃ j ≙ min{t > τ̃ j−1 ∶ τt > τt−1} for j ∈ [2,N∥. Observe that by

deőnition, τt ≙ τ̃ j for all t ∈ Ij . Further, for all j and t ∈ Ij , we have either t ≙ τ̃ j or τt−1 ≙ τ̃ j < t, so

that:

h2t
h2τ̃ j
≤ 4 +

t−1

∑
s≙1

∥gs∥2
h2s

Now, we show that Vt+1/hτ2t+1 ≤ Bt+1. Notice that if t is the last round of an interval Ik, then

t + 1 would be the start of the next epoch so hτt+1 ≙ ht+1 and Vt+1/h2τt+1 ≙ Vt+1/h2t+1 ≤ Bt+1 (since

118

c ≥ 1). Otherwise, t + 1 occurs before the end of interval Ik so

Vt+1

h2τt+1
≙
ch2t+1 + ∥g∥21∶t

h2τ̃k

≤ c
h2t+1
h2τ̃k

+

k

∑
j≙1

∑
s∈Ij
s≤t

∥gs∥2
h2τ̃ j

≤ c
h2t+1
h2τ̃k

+

k

∑
j≙1

∑
s∈Ij
s≤t

h2s
h2τ̃ j

Now, apply the deőnition of τ̃ j to get:

≤ c(4 + t

∑
s≙1

∥gs∥2
h2s
) + k

∑
j≙1

∑
s∈Ij
s≤t

(4 + s−1

∑
s′≙1

∥gs′∥2
h2s′
)

≤ c(4 + t

∑
s≙1

∥gs∥2
h2s
) + t

∑
s≙1

(4 + s−1

∑
s′≙1

∥gs′∥2
h2s′
)

≤ c
t+1

∑
s≙1

(4 + s−1

∑
s′≙1

∥gs′∥2
h2s′
) ≙ Bt+1.

Now, using this we have that αt ≙
ε√

Bt log
2(Bt) ≤

εhτt√
Vt log

2(Vt/hτ2
t
) and thus

T

∑
t≙1

αt ∥gt∥2√
Vt

≙

N

∑
j≙1

∑
t∈Ij

αt ∥gt∥2√
Vt

≙ ϵ
N

∑
j≙1

∑
t∈Ij

∥gt∥2√
Vt
√
Bt log

2(Bt) ≤ ϵ
N

∑
j≙1

∑
t∈Ij

hτt
∥gt∥2

Vt log
2 (Vt/h2τt)

≙ ϵ
N

∑
j≙1

hτ̃ j ∑
t∈Ij

∥gt∥2
(ch2t + ∥g∥21∶t−1) log2 (ch2t+∥g∥21∶t−1h2τt

)
≤ ϵ

N

∑
j≙1

hτ̃ j ∑
t∈Ij

∥gt∥2
((c − 1)h2τ̃ j + ∥g∥21∶t) log2 ((c−1)h

2

τ̃j
+∥g∥2

1∶t

h2
τ̃j

)
≤ ϵ

N

∑
j≙1

hτ̃ j ∫
(c−1)h2τ̃j+∥g∥21∶t
(c−1)h2

τ̃j

1

x log2(x/h2τ̃ j)dx

≙ ϵ
N

∑
j≙1

hτ̃ j
−1

log (x/h2τ̃ j)
RRRRRRRRRRR
(c−1)h2τ̃j+∥g∥21∶t

x≙(c−1)h2
τ̃j

≤
ϵ

log (c − 1)
N

∑
j≙1

hτ̃ j .

Notice that each interval begins when
h2τ̃j
h2
τ̃j−1

> ∑t−1s≙1
∥gs∥2
h2s
+ 4 > 4, so hτ̃ j > 2hτ̃ j−1 and hence

ϵ

log (c − 1)
N

∑
j≙1

hτ̃ j ≤
ϵ

log (c − 1)
N−1

∑
j≙0

1

2j
hτ̃N ≤

2ϵhT

log (c − 1) ≤ 2ϵhT ,

119

for c > 4.

B.1.4 Proofs for Section 6.4 (Trade-offs in the Horizon Dependence)

Proof of Theorem 6.4.2

Theorem 6.4.2. Under the same assumptions as Theorem 6.1.1, let ρ ∈ [0, 1
2
) and suppose we set

αt ≙ ϵG
2ρ/V ρ

t for all t. Then for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ O⎛⎝ ϵG
2ρ

1 − 2ρ
V

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥V ρ

T+1

ϵG2ρ
+ 1) ∨G log(∥u∥V ρ

T+1

ϵG2ρ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎠,
where VT+1 ≤ O(∥g∥21∶T).
Proof. We will prove the result with αt ≙ ϵG

1−2β/V 1

2
−β

t for β ∈ (0, 1
2
∥ and then conclude by choosing

β ≙ 1
2
− ρ for ρ ∈ [0, 1

2
). Following the same steps as Theorem 6.1.1, we have

RT (u) ≤ ψT+1(u) + T

∑
t≙1

δt

≤ ψT+1(u) + T

∑
t≙1

2αt ∥gt∥2√
Vt

and substituting αt ≙ ϵG
1−2β/V 1

2
−β

t ,

≙ ψT+1(u) + T

∑
t≙1

2ϵG1−2β ∥gt∥2
V

1−β
t

≤ ψT+1(u) + 2ϵG1−2β
T

∑
t≙1

∥gt∥2(∥g∥21∶t)1−β
where we’ve used Vt ≙ 4G

2
+ ∥g∥21∶t−1 ≥ ∥g∥21∶t. Moreover, by concavity of x ↦ xβ for β < 1 we have

120

(∥g∥21∶t)β − (∥g∥21∶t−1)β ≥ β∥gt∥2(∥g∥2
1∶t)1−β , and hence ∑Tt≙1 ∥gt∥2(∥g∥2

1∶t)1−β ≤
1
β
(∥g∥21∶T)β , giving an overall bound of

RT (u) ≤ ψT+1(u) + 2ϵG1−2β

β
(∥g∥21∶T)β

≤ k ∥u∥ ⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥

αT+1
+ 1) + 1 ∨G log(∥u∥

αT+1
+ 1)⎤⎥⎥⎥⎥⎦ +

2ϵG1−2β

β
(VT+1)β

≤ O

⎛⎜⎜⎝
ϵ

β
G1−2βV

β
T+1 + ∥u∥

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÁÀVT+1 log
⎛⎜⎝
∥u∥V 1

2
−β

T+1

ϵG1−2β
+ 1
⎞⎟⎠ ∨G log

⎛⎜⎝
∥u∥V 1

2
−β

T+1

ϵG1−2β
+ 1
⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

where the őrst inequality bounds ψT+1(u) using the same argument as Theorem 6.1.1. Substituting

β ≙ 1
2
− ρ gives the stated result.

Proof of Theorem 6.4.3

Theorem 6.4.3. Under the same assumptions as Theorem 6.2.1, let ρ ∈ [0, 1
2
) and suppose we

set Bρ
t ≙ (4∑ts≙1 [2 1

ρ +∑s−1s′≙1
∥gs′∥2
h2
s′
])ρ and αt ≙ ϵ/Bρ

t for all t.1 Then for all u ∈ Rd, Algorithm 2

guarantees

RT (u) ≤ O⎛⎜⎝
ϵh

2ρ
T

1 − 2ρ
V

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥Bρ

T+1

ϵ
+ 1) ∨ hT log(∥u∥Bρ

T+1

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎟⎠
where and VT+1 ≤ O(∥g∥21∶T).
Proof. First note that limρ→0B

ρ
t ≙ limρ→0 [4∑ts≙1 [2 1

ρ +∑s−1s′≙1
∥gs∥2
h
s2
]]ρ ≙ 2, so for the case ρ ≙ 0 we

let Bρ
t ≙ 2 for all t. Then following the same argument as Proposition 6.4.1 we get

RT (u) ≤ O⎛⎜⎝ϵ
√∥g∥21∶T + ∥u∥

⎡⎢⎢⎢⎢⎣
¿ÁÁÀ∥g∥21∶T log(∥u∥

ϵ
+ 1) ∨ hT log(∥u∥

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎟⎠ .

Next, we consider the case ρ > 0. Similar to Theorem 6.4.2, we prove the result with Bt ≙

4∑ts≙1 [2 2

1−2β +∑s−1s′≙1
∥gs∥2
h
s2
] and αt ≙ ϵ/B 1

2
−β

t for β ∈ (0, 1
2
), and then substitute ρ ≙ 1

2
−β to complete

the result. Following the same arguments as Theorem 6.2.1, we have

RT (u) ≤ 2k ∥u∥ [√VT+1 log (∥u∥ /αT+1 + 1) ∨ hT log (∥u∥ /αT+1 + 1)] + 2 T

∑
t≙1

αt ∥gt∥2√
Vt

1Note that limρ→0B
ρ
t ≙ 2, so for ρ ≙ 0 we allow an abuse of notation by letting Bρt ∶≙ 2 to avoid specifying separate

cases.

121

where Vt ≙ 4h
2
t + ∥g∥21∶t−1 and ht ≥ ∥gt∥ for all t.

Next, we follow the same argument as Lemma B.1.1. Deőne τ1 ≙ 1 and for t > 1 deőne τt ≙

max{t′ ∶ t′ ≤ t and ∑t′−1s≙1
∥gs∥2
h2s
+ 2

2

1−2β <
h2
t′

h2τ
t′−1

}. Then, we partition [1, T ∥ into the disjoint intervals

[1, T ∥ ≙ I1 ∪ . . . ∪ IN over which τt is őxed. Denote Ij ≙ [τ̃ j , τ̃ j+1 − 1∥ where τ̃1 ≙ 1, τ̃N+1 ≙ T + 1,

and τ̃ j ≙min{t > τ̃ j−1 ∶ τt > τt−1} for j ∈ [2,N∥. Using the same argument as Lemma B.1.1, it holds

that Bt+1 ≙ 4∑t+1s≙1 [2 2

1−2β +∑s−1s′≙1
∥gs′∥2
h2
s′
] ≥ Vt+1

h2τt+1
, so plugging this in above we have

T

∑
t≙1

αt ∥gt∥2√
Vt

≙ ϵ
N

∑
j≙1

∑
t∈Ij

∥gt∥2
B

1

2
−β

t

√
Vt

≤ ϵ
N

∑
j≙1

h
1−2β
τ̃ j

∑
t∈Ij

∥gt∥2
V

1−β
t

(∗)
≤ ϵ

N

∑
j≙1

h
1−2β
τ̃ j

1

β
(∑
t∈Ij

∥gt∥2)β
≤
ϵ

β
(∥g∥21∶T)β N

∑
j≙1

h
1−2β
τ̃ j

,

where (∗) bounds ∑t∈Ij ∥gt∥
2

V
1−β
t

using the same argument as Theorem 6.4.2. Then, since each interval

begins when h2τ̃ j/h2τ̃ j−1 ≥ ∑t−1s≙1
∥gs∥2
h2s
+ 2

2

1−2β ≥ 2
2

1−2β , we have h1−2βτ̃ j
≥ 2h

1−2β
τ̃ j−1

, so

T

∑
t≙1

αt ∥gt∥2√
Vt

≤
ϵ

β
(∥g∥21∶T)β N

∑
j≙1

h
1−2β
τ̃ j

≤
ϵ

β
(∥g∥21∶T)β N−1∑

j≙0

h
1−2β
τ̃N

1

2j

≤
ϵ

β
h
1−2β
T (∥g∥21∶T)β N−1∑

j≙0

1

2j

≤
2ϵ

β
h
1−2β
T (∥g∥21∶T)β

Plugging this back in above and substituting β ≙ 1
2
− ρ, we have

RT (u) ≤ 2k ∥u∥ [√VT+1 log (∥u∥ /αT+1 + 1) ∨ hT log (∥u∥ /αT+1 + 1)] + 2ϵ

β
h
1−2β
T (∥g∥21∶T)β

≤ O
⎛⎜⎝
ϵh

2ρ
T

1 − 2ρ
V

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎣
¿ÁÁÀVT+1 log(∥u∥Bρ

T+1

ϵ
+ 1) ∨ hT log(∥u∥Bρ

T+1

ϵ
+ 1)⎤⎥⎥⎥⎥⎦

⎞⎟⎠ ,

and Bρ
T+1 ≙ (4∑T+1s≙1 [2 1

ρ +∑s−1s′≙1
∥gs′∥2
h2
s′
])ρ.

122

Optimistic Trade-offs in the Horizon

A result analogous to Theorem 6.4.2 can be shown for our optimistic algorithm as well, and is stated

here for completeness. Formal proof is omitted since it follows the same argument as Theorem 6.4.2

with only superőcial modiőcation: following the same steps as Theorem 6.3.1, we have

RT (u) ≤ 2k ∥u∥ [√V̂ T+1 log (∥u∥ /α̂T+1 + 1) ∨ 2G log (∥u∥ /α̂T+1 + 1)]
+

T

∑
t≙1

2α̂t ∥∇ℓt(wt) −∇ℓ̂t(wt)∥2√
V̂ t

,

where V̂ t ≙ 16G
2
+∑t−1s≙1 ∥∇ℓs(ws) −∇ℓ̂s(ws)∥2. Now follow the same arguments as Theorem 6.4.2

to prove the following result.

Theorem B.1.2. Under the same assumptions as Theorem 6.1.1, let ρ ∈ [0, 1
2
) and suppose we set

αt ≙ ϵG
2ρ/V̂ ρ

t for all t. Then for all u ∈ Rd, Algorithm 2 guarantees

RT (u) ≤ O⎛⎝ ϵG
2ρ

1 − 2ρ
V̂

1

2
−ρ

T+1 + ∥u∥
⎡⎢⎢⎢⎢⎢⎣
¿ÁÁÀV̂ T+1 log(∥u∥ V̂ ρ

T+1

ϵG2ρ
+ 1) ∨G log(∥u∥ V̂ ρ

T+1

ϵG2ρ
+ 1)
⎤⎥⎥⎥⎥⎥⎦
⎞⎠,

where V̂ T+1 ≙ 16G
2
+∑Tt≙1 ∥∇ℓt(wt) −∇ℓ̂t(wt)∥2

123

B.2 Details for Chapter 7

B.2.1 Proofs for Section 7.1 (Online Learning with Quadratically Bounded

Losses)

Proof of Theorem 7.1.2

Theorem 7.1.2. Let A be an online learning algorithm and let wt ∈ W be its output on round

t. Let {gt} be a (Gt, Lt)-quadratically bounded sequence w.r.t. {wt}, where Gt ∈ [0,Gmax∥ and

Lt ∈ [0, Lmax∥ for all t. Let ϵ > 0, k ≥ 3, κ ≥ 4, c ≥ 4, Vt+1 ≙ cG
2
max + G

2
1∶t, ρt+1 ≙

1√
L2
max+L

2

1∶t

,

αt+1 ≙
√
Vt+1 log

2(Vt+1/G2
max)

ϵGmax
, and set

ψt(w) ≙ k∫ ∥w∥
0

min
η≤ 1

Gmax

[log (x/αt + 1)
η

+ ηVt]dx + κ ∥w∥2
2ρt

and φt(w) ≙ L2
t

2
√
L2
1∶t

∥w∥2 .
Then for any u ∈W , Algorithm 6 guarantees

RT (u) ≤ 2ϵGmax + κ ∥u∥2√L2
max +L

2
1∶T + 2k ∥u∥max{√VT+1FT+1(∥u∥),GmaxFT+1(∥u∥)}

where FT+1(∥u∥) ≙ log (∥u∥ /αT+1 + 1).
Proof. We can assume without loss of generality that 0 ∈W , since we could otherwise just perform

a coordinate translation. Hence, we have w1 ≙ argminw∈W ψ1(w) ≙ 0, and it is easily seen that for

any w ∈W we’ll have Dψt(w∣w1) ≙Dψt(w∣0) ≙ ψt(w).
First apply Lemma 4.1.2 withMt(w) ≙ w and φt(w) ≙ L2

t

2
√
L2

1∶t

∥w∥2 to get

T

∑
t≙1

⟨gt,wt − u⟩ ≤DψT+1(u∣w1) +φ1∶T (u) + T

∑
t≙1

⟨gt +∇φt(wt),wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt)´¹¹¸¹¹¹¶
≙∶δt

≤ ψT+1(u) +φ1∶T (u) + δ1∶T .
Let us őrst bound the leading term ψT+1(u). For brevity, denote Ft(x) ≙ log (x/αt + 1) and let

Ψt(∥w∥) ≙ ∫ ∥w∥0 minη≤1/Gmax
[Ft(x)

η
+ ηVt]dx and Φt(∥w∥) ≙ κ

2ρt
∥w∥2, so that ψt(w) ≙ Ψt(∥w∥) +

Φt(∥w∥). Then

ψT+1(u) ≙ k∫ ∥u∥
0

Ψ′T+1(x)dx + κ

2ρt
∥u∥2

≤ k ∥u∥Ψ′T+1(∥u∥) + κ
2
∥u∥2√L2

max +L
2
1∶T .

124

Moreover,

Ψ′t(∥u∥) ≙ k min
η≤1/Gmax

[Ft(∥u∥)
η

+ ηVt]
≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VtFt(∥u∥) if Gmax

√
Ft(∥u∥) ≤√Vt

kGmaxFt(∥u∥) + k Vt
Gmax

otherwise

(∗)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VtFt(∥u∥) if Gmax

√
Ft(∥u∥) ≤√Vt

2kGmaxFt(∥u∥) otherwise

≙ 2kmax{√VtFt(∥u∥),GmaxFt(∥u∥)} .
where (∗) observes that Vt/Gmax ≤ GmaxFt(x) whenever Ψ′t(x) ≙ kGmaxFt(x) + kVt/Gmax. Next,

using Lemma A.3.3 we have

φ1∶T (u) ≙ 1

2
∥u∥2 T

∑
t≙1

L2
t√
L2
1∶t

≤ ∥u∥2√L2
1∶T ,

so overall we have

T

∑
t≙1

⟨gt,wt − u⟩ ≤ 2k ∥u∥max{√VT+1FT+1(∥u∥),GmaxFT+1(∥u∥)} + κ
2
∥u∥2√L2

max +L
2
1∶T + ∥u∥2√L2

1∶T + δ1∶T

(B.4)

We conclude by bounding the stability terms δ1∶T . Recall that

δt ≙ ⟨gt +∇φt(wt),wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt),
where ∆t(w) ≙ ψt+1(w) −ψt(w). We őrst separate into terms related to the Gt’s and terms related

to the Lt’s:

δt ≤ (∥gt∥ + ∥∇φt(wt)∥) ∥wt −wt+1∥
−Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt)
≤ Gt ∥wt −wt+1∥ −DΨt(wt+1∣wt) −∆t(wt+1)
+ 2Lt ∥wt∥ ∥wt −wt+1∥ −DΦt(wt+1∣wt) −φt(wt),

where we slightly abuse notations DΨt and DΦt to denote the Bregman divergences w.r.t. the

function w ↦ Ψt(∥w∥) and w ↦ Φt(∥w∥). In the second line, observe that Φt(∥w∥) ≙ κ
2ρt
∥w∥2 is κ

ρt

strongly convex, so DΦt(wt+1∣wt) ≥ κ
2ρt
∥wt+1 −wt∥2 and an application of Fenchel-Young inequality

125

yields

2Lt ∥wt∥ ∥wt −wt+1∥ −DΦt(wt+1∣wt) −φt(wt) ≤ 2Lt ∥wt∥ ∥wt −wt+1∥ − κ

2ρt
∥wt+1 −wt∥2 −φt(wt)

≤
4ρtL

2
t ∥wt∥2
2κ

−φt(wt)
≙

2L2
t ∥wt∥2

κ
√
Lmax +L

2
1∶t−1

−
L2
t

2
√
L2
1∶t

∥wt∥2
≤
2L2

t ∥wt∥2
κ
√
L2
1∶t

−
L2
t

2
√
L2
1∶t

∥wt∥2
≤ 0

for κ ≥ 4. Hence,

δt ≤ Gt ∥wt −wt+1∥ −DΨt(wt+1∣wt) −∆t(wt+1),
which we will bound by showing that ∆t(w) ≥ ηt(w)G2

t for some suitable Gt-Lipschitz convex

function ηt and then invoking Lemma 4.0.2. To this end, observe that

∆t(w) ≙ ψt+1(w) − ψt(w)
≙ Ψt+1(∥w∥) −Ψt(∥w∥)´¹¹¸¹¹¹¶

≙∶∆Ψ

t (w)
+Φt+1(∥w∥) −Φt(∥w∥)´¹¹¹¸¹¹¶

≙∶∆Φ

t (w)
≥∆Ψ

t (w).
Moreover, writing ∆Ψ

t (w) ≙ Ψt+1(∥w∥) −Ψt(∥w∥) ≙ ∫ ∥w∥0 Ψ′t+1(x) −Ψ′t(x)dx, we have

Ψ′t+1(x) −Ψ′t(x) ≙ k min
η≤1/Gmax

[Ft+1(x)
η

+ ηVt+1] − k min
η≤1/Gmax

[Ft(x)
η
+ ηVt]

≥ k min
η≤1/Gmax

[Ft(x)
η
+ ηVt+1] − k min

η≤1/Gmax

[Ft(x)
η
+ ηVt]

and using the fact that for any η ≤ 1/Gmax, we can bound
Ft(x)
η
+ηVt+ηG

2
t ≥minη∗≤1/G [Ft(x)η∗

+ η∗Vt]+
ηG2

t , we have

≥ k min
η≤1/Gmax

[Ft(x)
η
+ ηVt] − k min

η≤1/Gmax

[Ft(x)
η
+ ηVt] + kG2

t min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt+1

,
1

Gmax

⎫⎪⎪⎬⎪⎪⎭
≥ kG2

t min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
2Vt

,
1

Gmax

⎫⎪⎪⎬⎪⎪⎭ ≥ G
2
t min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

Gmax

⎫⎪⎪⎬⎪⎪⎭ ,

126

where the last line observes that 1
Vt
≙

1
Vt+1

Vt+1
Vt
≙

1
Vt+1
(1 + G2

t

Vt
) ≤ 2

Vt+1
for Vt ≥ G

2
t and recalls k ≥ 3.

Deőning ηt(∥w∥) ≙ ∫ ∥w∥0 min{√Ft(x)
Vt

, 1
Gmax
}dx, we then immediately have:

∆Ψ
t (∥w∥) ≥ G2

t ∫
∥w∥

0
min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

Gmax

⎫⎪⎪⎬⎪⎪⎭dx ≙ ηt(∥w∥)G
2
t .

Hence:

δt ≤ Gt ∥wt −wt+1∥ −Dψt(wt+1∣wt) −∆t(wt+1)
≤ Gt ∥wt −wt+1∥ −Dψt(wt∣wt+1) − ηt(∥wt+1∥)G2

t (B.5)

Finally, we conclude by showing that ψt satisőes the assumptions of Lemma 4.0.2 w.r.t. this function

ηt.

We can write

Ψt(x) ≙ k∫ x

0
min

η≤1/Gmax

[Ft(v)
η
+ ηVt]dv

≙ k∫
x

0
max{2√VtFt(v),GmaxFt(v) + Vt

Gmax

}dv
and so for any x > 0 we have

Ψ′t(x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2k
√
VtFt(x) if Gmax

√
Ft(x) ≤√Vt

kGmaxFt(x) + kVt
Gmax

otherwise

Ψ′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k
√
Vt(x+αt)√Ft(x) if Gmax

√
Ft(x) ≤√Vt

kGmax

x+αt
otherwise

Ψ′′′t (x) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2 if Gmax

√
Ft(x) ≤√Vt

−kGmax(x+αt)2 otherwise
.

Clearly, we have Ψt(x) ≥ 0, Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x > 0. Moreover, for any

x ≥ αt(e − 1) ≙∶ x̊t, we have

∣Ψ′′′t (x)∣
Ψ′′t (x)2 ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2
(x+αt)2Ft(x)

k2Vt
if Gmax

√
Ft(x) ≤√Vt

kGmax(x+αt)2
(x+αt)2
k2G2

max

otherwise

≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2k
√
Vt
(1√

Ft(x) + 2
√
Ft(x)) if Gmax

√
Ft(x) ≤√Vt

1
kGmax

otherwise

127

and since x > αt(e − 1), we have Ft(x) > 1 and hence 1√
Ft(x) ≤

√
Ft(x):

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
√
Ft(x)

2k
√
Vt

if Gmax

√
Ft(x) ≤√Vt

1
kGmax

otherwise

≤
1

2
min

⎧⎪⎪⎨⎪⎪⎩
√

Ft(x)
Vt

,
1

Gmax

⎫⎪⎪⎬⎪⎪⎭ ≙
1

2
η′t(x),

where the last line recalls ηt(x) ≙ ∫ x0 min{√Ft(v)
Vt

, 1
Gmax
}dv and chooses k ≥ 3. Further, observe

that ηt(x) is convex and η′t(x) ≤ 1
Gmax

, hence 1
Gmax

-Lipschitz. Thus, Ψt satisőes the conditions of

Lemma 4.0.2 with ηt(x) ≙ ∫ x0 min{√Ft(x)
Vt

, 1
Gmax
}dx and x̊t ≙ αt(e−1), so summing Equation (B.5)

over all t, we have

T

∑
t≙1

δt ≤
T

∑
t≙1

Gt ∥wt −wt+1∥ −DΨt(wt+1∣wt) − ηt(∥wt+1∥)G2
t

≤

T

∑
t≙1

2G2
t

Ψ′′t (x̊t) ≙
T

∑
t≙1

2G2
t

k
√
Vt
(∥x̊t∥ + αt)

≤

T

∑
t≙1

2eαtG
2
t

k
√
Vt
≤

T

∑
t≙1

2
αtG

2
t√

Vt

where the last line bounds e/k ≤ 3/k ≤ 1 for k ≥ 3. Next, substitute αt ≙
ϵGmax√

Vt log
2(Vt/Gmax) to bound

T

∑
t≙1

δt ≤ 2ϵGmax

T

∑
t≙1

G2
t

Vt log
2 (Vt/G2

max)
≤ 2ϵGmax

T

∑
t≙1

G2
t

((c − 1)G2
max +G

2
1∶t) log2 ((c−1)G2

max+G
2

1∶t

G2
max

)
≤ 2ϵGmax∫

(c−1)G2
max+G

2

1∶T

(c−1)G2
max

1

x log2(x/G2
max)dx

≙ 2ϵGmax
1

log(x/G2
max)

RRRRRRRRRRR
(c−1)G2

max+G
2

1∶T

(c−1)G2
max

≤
2ϵGmax

log (c − 1) ≤ 2ϵGmax,

128

for c ≥ 4. Finally, plugging this back into Equation (B.4) yields

T

∑
t≙1

⟨gt,wt − u⟩ ≤ 2k ∥u∥max{√VT+1FT+1(∥u∥),GmaxFT+1(∥u∥)}
+
κ

2
∥u∥2√L2

max +L
2
1∶T + ∥u∥2√L2

1∶T + δ1∶T

≤ 2k ∥u∥max{√VT+1FT+1(∥u∥),GmaxFT+1(∥u∥)}
+
κ

2
∥u∥2√L2

max +L
2
1∶T + ∥u∥2√L2

1∶T + 2ϵGmax

≤ 2ϵGmax + κ ∥u∥2√L2
max +L

2
1∶T

2k ∥u∥max{√VT+1FT+1(∥u∥),GmaxFT+1(∥u∥)}

Proof of Theorem 7.1.3

Theorem 7.1.3. Let A be an algorithm deőned over R
2 and let wt denote the output of A on round

t. Let ϵ > 0 and suppose A guarantees RT (0) ≤ ϵ against any quadratically bounded sequence {gt}.
Then for any T ≥ 1, G > 0 and L ≥ 0 there exists a sequence g1, . . . , gT satisfying ∥gt∥ ≤ G + L ∥wt∥
and a comparator u ∈ R2 such that

RT (u) ≥ Ω(G ∥u∥√T log (∥u∥√T /ϵ) ∨L ∥u∥2√T) .
Proof. Let wt ∈ R

2 be the output of algorithm A at time t. Consider sequences g1, . . . , gT where

gt ∈

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ −GL ∥wt∥

⎞⎠ ,⎛⎝ −G

−L ∥wt∥
⎞⎠
⎫⎪⎪⎬⎪⎪⎭, and deőne the randomized sequence g̃t ≙

⎛⎝ −G

−εtL ∥wt∥
⎞⎠ where εt are

independent random signs. Consider the worst-case regret against a comparator constrained to an

129

ℓ∞ ball of radius U :

sup
g1,...,gT

RT ≙ sup
g1,...,gT

T

∑
t≙1

⟨gt,wt⟩ − min
u∶∥u∥

∞
≤U

T

∑
t≙1

⟨gt, u⟩
≥ Eε1,...,εT [T∑

t≙1

⟨g̃t,wt⟩ − min
u∶∥u∥

∞
≤U

T

∑
t≙1

⟨g̃t, u⟩]
≥ Eε1,...,εT [− T

∑
t≙1

G ∥wt∥ − min
u∶∥u∥

∞
≤U

T

∑
t≙1

−Gu1 − u2εtL ∥wt∥]
≙ Eε1,...,εT [−G T

∑
t≙1

∥wt∥ +GTU + max∣u2∣≤U u2L
T

∑
t≙1

εt ∥wt∥]
≙ Eε1,...,εT [GTU +UL ∣ T∑

t≙1

εt ∥wt∥∣ −G T

∑
t≙1

∥wt∥]
(a)
≥ Eε1,...,εT

⎡⎢⎢⎢⎢⎣GTU +
UL√
2

¿ÁÁÀ T

∑
t≙1

∥wt∥2 −G T

∑
t≙1

∥wt∥⎤⎥⎥⎥⎥⎦
(b)
≥ Eε1,...,εT

⎡⎢⎢⎢⎢⎣GTU +
UL√
2

¿ÁÁÀ T

∑
t≙1

∥wt∥2 −G
¿ÁÁÀT

T

∑
t≙1

∥wt∥2⎤⎥⎥⎥⎥⎦
where (a) applies Khintchine inequality, (b) applies Cauchy-Schwarz inequality, and choosing U ≙
G
L

√
2T we have

≙ GTU ≙
L√
2
U2
√
T ≙

L ∥u∥2√T
2
√
2

,

where the őnal equality bounds ∥u∥2 ≙ u21 + u22 ≤ 2U2. Hence, there exists a sequence of gt which

incurs at least Ω(L ∥u∥2√T) regret. Moreover, for any algorithm which guarantees RT (0) ≤ ϵ,
there exists a sequence g1, . . . , gT with ∥gt∥ ≤ G for all t such that for any T and u, RT (u) ≥
G

3
√
2
∥u∥√T log (∥u∥√T /√2ϵ) (Mcmahan and M. Streeter 2012, Theorem 8). Thus, taking the

worst of these two sequences yields

sup
g1,...,gT

RT ≥max{ G

3
√
2
∥u∥√T log (∥u∥√T /√2ϵ), L ∥u∥2√T

2
√
2
}

B.2.2 Multi-scale Experts Algorithm

For completeness, in this section we provide a multi-scale experts algorithm which achieves the

bound required for our dynamic regret algorithm in Section 9.2. Our approach is inspired by

the Multi-scale Multiplicative-weight with Correction (MsMwC) algorithm of L. Chen, Luo, and

130

Algorithm 14: Multi-scale Fixed-share

1 Input: p1 ∈∆N ∩ (0,1∥N , µ1, . . . , µN in R>0, k > 0, weights β1, . . . , βT in [0,1∥
2 Initialize: q1 ≙ p1
3 Deőne ψi(x) ≙ k

µi ∫
x
0 log (v)dv for i ∈ [N∥

4 for t ≙ 1 ∶ T do

5 Play pt ∈∆N , receive loss ℓ̃t ∈ R
N

6 Update qt+1 ≙ argminq∈∆N ∑Ni≙1(ℓ̃ti + µiℓ̃2ti)qi +Dψi(qi∣pti)
7 Set pt+1 ≙ (1 − βt)qt+1 + βtp1
8 end

Wei (2021), but formulated as a őxed-share update instead of an update on a “clippedž simplex

∆̃N ≙∆N∩[β,1∥N . The MsMwC algorithm provides a guarantee analogous to the following theorem,

but formulating it as a őxed-share update will allow us a bit more modularity when constructing

our dynamic regret algorithm in Appendix C.1.2, which requires several rather delicate conditions

to come together in the right way.

Theorem B.2.1. Let k ≥ 9
2

and assume µ1, . . . , µN satisfy µiℓ̃ti ≤ 1 for all t ∈ [T ∥ and i ∈ [N∥.
Then for any u ∈∆N , Algorithm 14 guarantees

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤ N

∑
i≙1

ui

⎡⎢⎢⎢⎢⎢⎣
k [log (ui/p1i) +∑Tt≙1 log (1

1−βt
)]

µi
+ µi

T

∑
t≙1

ℓ̃
2

ti

⎤⎥⎥⎥⎥⎥⎦
+ k(1 + β1∶T) N∑

i≙1

p1i

µi
.

Moreover, for βt ≤ 1 − exp (− 1
T
),

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤ N

∑
i≙1

ui [k [log (ui/p1i) + 1∥
µi

+ µi

T

∑
t≙1

ℓ̃
2

ti] + 2k N

∑
i≙1

p1i

µi

Proof. The described algorithm is an instance of Algorithm 2 applied to the simplex ∆N with

φt(p) ≙ ∑Ni≙1 µiℓ̃2tipi, and Mt+1(p) ≙ (1 − βt)p + βtp1. Applying Lemma 4.1.2:

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤Dψ(u∣p1) −Dψ(u∣pT+1) +φ1∶T (u) + ξ1∶T + δ1∶T ,
where

ξt ≙Dψ(u∣pt+1) −Dψ(u∣qt+1)
δt ≙ ⟨ℓ̃t +∇φt(pt), pt − qt+1⟩ −Dψ(qt+1∣pt) −φt(pt).

131

Observe that for any u, p, and q in ∆N we can write

Dψ(u∣p) −Dψ(u∣q) ≙ N

∑
i≙1

k

µi
[ui log (ui/pi) − ui + pi∥ − N

∑
i≙1

k

µi
[ui log (ui/qi) − ui + qi∥

≙

N

∑
i≙1

k

µi
[ui log (qi/pi) + pi − qi∥ ,

so we have

Dψ(u∣p1) −Dψ(u∣pT+1) ≙ k N

∑
i≙1

ui log (pT+1,i/p1i) + p1i − pT+1,i
µi

≤ k
N

∑
i≙1

sup
p≥0

ui log (p/p1i) + p1i − p
µi

≙ k
N

∑
i≙1

ui log (ui/p1i) + p1i − ui
µi

≤ k
N

∑
i≙1

ui log (ui/p1i)
µi

+ k
N

∑
i≙1

p1i

µi

and

T

∑
t≙1

ξt ≙
T

∑
t≙1

Dψ(u∣pt+1) −Dψ(u∣qt+1)
≙ k

T

∑
t≙1

N

∑
i≙1

ui log (qt+1,i/pt+1,i) + pt+1,i − qt+1,i
µi

≙ k
T

∑
t≙1

N

∑
i≙1

ui log (qt+1,i(1−βt)qt+1,i+βtq1,i)
µi

+ k
T

∑
t≙1

N

∑
i≙1

(1 − βt)qt+1,i + βtq1,i − qt+1,i
µi

≙ k
T

∑
t≙1

N

∑
i≙1

ui

µi
log(qt+1,i(1 − βt)qt+1,i + βtq1,i)

+ k
T

∑
t≙1

N

∑
i≙1

βt(q1,i − qt+1,i)
µi

≤ k
T

∑
t≙1

N

∑
i≙1

ui

µi
log (1

1 − βt
) + βtq1i

µi

≙ k
N

∑
i≙1

ui

µi

T

∑
t≙1

log (1

1 − βt
) + kβ1∶T N

∑
i≙1

p1i

µi
,

132

where the last line recalls p1 ≙ q1. Plugging these bounds back into the above regret bound yields

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤ k N

∑
i≙1

⎡⎢⎢⎢⎢⎣
ui log (ui/p1i)

µi
+ (1 + β1∶T)p1i

µi
+
ui

µi

T

∑
t≙1

log (1

1 − βt
)⎤⎥⎥⎥⎥⎦ +φ1∶T (u) + δ1∶T

≙

N

∑
i≙1

ui

⎡⎢⎢⎢⎢⎣
k [log (ui/p1i) +∑Tt≙1 log (1

1−βt
)]

µi
+ µi

T

∑
t≙1

ℓ̃
2

ti

⎤⎥⎥⎥⎥⎦ + k(1 + β1∶T)
N

∑
i≙1

p1i

µi

+

N

∑
i≙1

T

∑
t≙1

(ℓ̃ti + µiℓ̃2ti)(pti − qt+1,i) −Dψi(qt+1,i∣pt,i) − µiℓ̃2tipti´¹¹¸¹¹¹¶
≙∶δti

, (B.6)

where the last line recalls δt ≙ ⟨ℓ̃t +∇φt(pt), pt − qt⟩ −Dψ(qt+1∣pt) −φt(pt), φt(p) ≙ ∑Ni≙1 µiℓ̃2tipi, and

denotes ψi(p) ≙ k
µi ∫

p
0 log (x)dx so that ψ(p) ≙ ∑Ni≙1ψi(pi). We next focus our attention on the

terms in the last line, δti.

Note that by construction, we have pti ≙ (1 − βt)qti + βtq1i ≥ βtq1i > 0 for all i. Thus, ψi(p) ≙
k
µi ∫

p
0 log (v)dv is twice differentiable everywhere on the line connecting pti and qt+1,i for any i with

qt+1,i > 0. For any such i, we have via Taylor’s theorem that there exists a p̃i on the line connecting

pti and qt+1,i such that

Dψi(qt+1,i∣pti) ≥ 1

2
(pti − qt+1,i)2ψ′′i (p̃i) ≙ 1

2

(pti − qt+1,i)2k
µip̃i

so using this with the assumption that µi ∣ℓ̃ti∣ ≤ 1, we have

δti ≤ ∣ℓ̃ti + µiℓ̃2ti∣ ∣pti − qt+1,i∣ − 1

2

(pti − qt+1,i)2k
µip̃i

− µiℓ̃
2

tipti

≤ 2 ∣ℓ̃ti∣ ∣pti − qt+1,i∣ − 1

2

(pti − qt+1,i)2k
µip̃i

− µiℓ̃
2

tip̃i + µiℓ̃
2

ti ∣pti − p̃i∣
(a)
≤ 3 ∣ℓ̃ti∣ ∣pti − qt+1,i∣ − 1

2

(pti − qt+1,i)2k
µip̃i

− µiℓ̃
2

tip̃i

≤
9

2k
µi ∣ℓ̃ti∣2 p̃i − µiℓ̃2tip̃i

(b)
≤ 0,

where (a) uses ∣p̃i − pti∣ ≤ ∣qt+1,i − pti∣ for any p̃i on the line connecting qt+1,i and pti and (b) chooses

133

k ≥ 9
2
. Similarly, for any i for which qt+1,i ≙ 0 we have

δti ≙ (ℓ̃ti + µiℓ̃2ti)pti −Dψi(0∣pti) − µiℓ̃2tipti
≤ ℓ̃tipti −

pti

µi

≤
pti

µi
−
pti

µi
≤ 0,

where the last line again uses µi ∣ℓ̃ti∣ ≤ 1. Thus, in either case we have δti ≤ 0. Plugging this into

Equation (B.6) reveals the őrst statement of the theorem:

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤ N

∑
i≙1

ui

⎡⎢⎢⎢⎢⎢⎣
k [log (ui/p1i) +∑Tt≙1 log (1

1−βt
)]

µi
+ µi

T

∑
t≙1

ℓ̃
2

ti

⎤⎥⎥⎥⎥⎥⎦
+ k(1 + β1∶T) N∑

i≙1

p1i

µi
.

For the second statement of the theorem, observe that βt ≤ 1 − exp (−1/T) ≤ 1
T

, so β1∶T ≤ 1,

and likewise log (1
1−βt
) ≙ log (exp (1/T)) ≙ 1

T
, so ∑Tt≙1 log (1

1−βt
) ≤ 1. Hence, the previous display is

bounded as

T

∑
t≙1

⟨ℓ̃t, pt − u⟩ ≤ N

∑
i≙1

ui [k [log (ui/p1i) + 1∥
µi

+ µi

T

∑
t≙1

ℓ̃
2

ti] + 2k N

∑
i≙1

p1i

µi

134

Appendix C

Part III (Adapting to Non-stationarity)

C.1 Details for Chapter 9

C.1.1 Proofs for Section 9.1 (Lipschitz Losses)

Proof of Proposition 9.1.1

We break the proof of Proposition 9.1.1 into parts; we őrst derive a partial result in Proposi-

tion C.1.1, and then make particular choices for the unspeciőed parameters αt and bt.

Proposition C.1.1. (αt)Tt≙1 be a non-increasing sequence and consider Algorithm 2 with

ψt(w) ≙ 2∫ ∥w∥
0

log (x/αt + 1)
η

dx

φt(w) ≙ (η ∥gt∥2 + bt) ∥w∥ ,
where bt ≥ 0 and η ≤ 1

G
. Then for all u1, . . . , uT in R

d, Algorithm 2 guarantees

RT (u) ≤ 2M log (M/αT+1 + 1)
η

+

T−1

∑
t≙1

[2 ∥ut+1 − ut∥ log (∥wt+1∥ /αt+1 + 1)
η

− bt ∥wt+1∥]
+

T

∑
t≙1

(η ∥gt∥2 + bt) ∥ut∥ + η T

∑
t≙1

αt ∥gt∥2 ,
where M ≙maxt ∥ut∥.

135

Proof. Using Lemma 4.0.1 we have

RT (u) ≤ ψT+1(uT) + T−1∑
t≙1

ρt +
T

∑
t≙1

φt(ut) + T

∑
t≙1

δt

≤
2 ∥uT ∥ log (∥uT ∥ /αT+1 + 1)

η
+

T−1

∑
t≙1

ρt +
T

∑
t≙1

φt(ut) + T

∑
t≙1

δt

≤
2M log (M/αT+1 + 1)

η
+

T−1

∑
t≙1

ρt +
T

∑
t≙1

φt(ut) + T

∑
t≙1

δt

where M ≙maxt≤T ∥ut∥ and

T−1

∑
t≙1

ρt ≙
T−1

∑
t≙1

⟨∇ψt+1(wt+1), ut − ut+1⟩ ≤ T−1∑
t≙1

∥∇ψt+1(wt+1)∥ ∥ut − ut+1∥
≙ 2

T−1

∑
t≙1

log (∥wt+1∥ /αt+1 + 1)
η

∥ut − ut+1∥
T

∑
t≙1

δt ≙
T

∑
t≙1

⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ϕt(wt+1)
≙

T

∑
t≙1

⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt+1)
First consider the terms ∑Tt≙1 δt. Since (αt)Tt≙1 is a non-increasing sequence, we have ∆t(wt+1) ≙
ψt+1(wt+1) − ψt(wt+1) ≥ 0 and

δt ≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −∆t(wt+1) −φt(wt+1)
≤ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) −φt(wt+1)
≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − η ∥gt∥2 ∥wt+1∥ − bt ∥wt+1∥ .

We proceed by showing that the regularizers ψt(⋅) satisfy the conditions of Lemma 4.0.2. we have

ψt(w) ≙ Ψt(∥w∥) ≙ 2 ∫ ∥w∥0
log(x/αt+1)

η
dx and

Ψ′t(x) ≙ 2log (x/αt + 1)η
, Ψ′′t (x) ≙ 2

η (x + αt) , Ψ′′′t (x) ≙ −2

η (x + αt)2 ,
so Ψt(x) ≥ 0, Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x > 0. Moreover,

−Ψ′′′t (x)
Ψ′′t (x)2 ≙

2

η(x + αt)2
η2(x + αt)2

22
≙
η

2
,

so assuming η ≤ 1
G

and letting ηt(∥w∥) ≙ η ∥w∥, we have ∣Ψ′′′t (x)∣ ≤ η′t(x)
2

Ψ′′t (x)2 for all x > 0, and

136

ηt(x) is a 1/G Lipschitz convex function. Hence, using Lemma 4.0.2 we have

δt ≤ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − η ∥gt∥2 ∥wt+1∥ − bt ∥wt+1∥
≙ ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt) − ηt(∥wt+1∥) ∥gt∥2 − bt ∥wt+1∥
≤
2 ∥gt∥2
Ψ′′t (0) − bt ∥wt+1∥ ≙ ηαt ∥gt∥2 − bt ∥wt+1∥ .

Plugging this back into the full regret bound we have

RT (u) ≤ 2M log (M/αT+1 + 1)
η

+ 2
T−1

∑
t≙1

∥ut − ut+1∥ log (∥wt+1∥ /αt+1 + 1)
η

+

T

∑
t≙1

φt(ut)
+

T

∑
t≙1

ηαt ∥gt∥2 − bt ∥wt+1∥
≙
2M log (M/αT+1 + 1)

η
+

T−1

∑
t≙1

[2 ∥ut+1 − ut∥ log (∥wt+1∥ /αt+1 + 1)
η

− bt ∥wt+1∥]
+

T

∑
t≙1

(η ∥gt∥2 + bt) ∥ut∥ + η T

∑
t≙1

αt ∥gt∥2 .

With this result in hand, we prove Proposition 9.1.1 by choosing values αt ≙
ϵG2

Vt log
2(Vt/G2) and

bt ≙ η ∥gt∥2. The full version of the result is given below.

Proposition 9.1.1. Let ℓ1, . . . , ℓT be G-Lipschitz convex functions and gt ∈ ∂ℓt(wt) for all t. Let

ϵ > 0, Vt ≙ 4G2
+ ∥g∥21∶t−1, and αt ≙

ϵG2

Vt log
2(Vt/G2) . For all t, set ψt(w) ≙ 2 ∫ ∥w∥0

log(x/αt+1)
η

dx, and

φt(w) ≙ 2η ∥gt∥2 ∥w∥ . Then after each round Algorithm 2 updates

θt ≙ ∇ψt(wt) − gt
wt+1 ≙

αt+1θt∥θt∥ [exp [
η

2
max (∥θt∥ − 2η∥gt∥2,0)] − 1]

where we we deőne C x∥x∥ ≙ 0 for all C when x ≙ 0. Moreover, for any u1, . . . , uT in R
d, Algorithm 2

guarantees

RT (u) ≤ 2ϵG + 4 (M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

η
+ 2η

T

∑
t≙1

∥gt∥2 ∥ut∥ .
where M ≙maxt ∥ut∥.
Proof. First, we will verify the update equation, and then show the regret bound. To compute the

137

update, observe that from the őrst-order optimality conditions, there is some ∇ϕt(wt+1) ∈ ∂ϕt(wt+1)
such that

gt +∇ψt(wt+1) −∇ψt(wt) +∇ϕt(wt+1) ≙ 0
Now, notice that we can write∇ϕt(wt+1) ≙ ∇ψt+1(wt+1)−∇ψt(wt+1)+∇φt(wt+1) for some∇φt(wt+1) ∈
∂φt(wt+1). Thus, we have:

gt +∇ψt+1(wt+1) −∇ψt(wt) +∇φt(wt+1) ≙ 0
Moreover, any value for wt+1 such that there is a φt(wt+1) ∈ ∂φt(wt+1) satisfying the above condition

is valid solution to the mirror descent update. We justify our update equation in two cases.

First, consider the case max(∥θt∥ − 2η∥gt∥,0) ≙ 0, In this case, the update equation suggests

wt+1 ≙ 0. To justify this, notice that ∂φt(0) consists of all vectors of norm at most 2η ∥gt∥2.
Further, ∇ψt+1(0) ≙ 0. Thus, whenever max(∥θt∥ − 2η∥gt∥,0) ≙ 0, we can set wt+1 ≙ 0 as described

by our update.

Now, let us suppose max(∥θt∥ − 2η∥gt∥,0) ≙ ∥θt∥ − 2η∥gt∥ > 0. Note that this implies θt ≠ 0,

and the update equation sets wt+1 ≠ 0. In the case wt+1 ≠ 0, φt(wt+1) is differentiable so that

φt(wt+1) ≙ 2η ∥gt∥2 wt+1∥wt+1∥ . Thus, we need to establish that indeed a non-zero wt+1 given by the

update equation is a solution to the optimality condition:

gt +∇ψt+1(wt+1) −∇ψt(wt) + 2η ∥gt∥2 wt+1∥wt+1∥ ≙ 0.

Writing ψt(w) ≙ Ψt(∥w∥) ≙ ∫ ∥w∥0 Ψ′t(x)dx, we have ∇ψt+1(wt+1) ≙ wt+1∥wt+1∥Ψ′t+1(∥wt+1∥) (where we

deőne wt+1∥wt+1∥ ⋅ 0 ≙ 0) and hence the optimality condition can be re-written:

wt+1∥wt+1∥ [Ψ′t+1(∥wt+1∥) + 2η ∥gt∥2] ≙ ∇ψt(wt) − gt ≙ θt
Now we need only verify that our expression wt+1 ≙

αt+1θt∥θt∥ [exp [η2(∥θt∥ − 2η∥gt∥)] − 1] satisőes this

condition. Fortunately, this is easily checked by observing the stated update satisőes:

Ψ′t+1(∥wt+1∥) ≙ 2

η
log(∥wt+1∥/αt+1 + 1) ≙ ∥θt∥ − 2η∥gt∥2.

Turning now to the regret, we begin by replacing the comparator sequence with an auxiliary

sequence û1, . . . , ûT to be determined later. This alternative sequence will eventually be designed

138

to have some useful stability properties while still being “closež to the real sequence u1, . . . , uT :

RT (u) ≙ T

∑
t≙1

⟨gt,wt − ut⟩ ≙ T

∑
t≙1

⟨gt,wt − ût⟩ + T

∑
t≙1

⟨gt, ût − ut⟩
≤ RT (û) + T

∑
t≙1

∥gt∥ ∥ût − ut∥
The őrst term is bounded via Proposition C.1.1 as

RT (û) ≤ 2M̂ log (M̂/αT+1 + 1)
η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ût∥ + η T

∑
t≙1

αt ∥gt∥2
+

T−1

∑
t≙1

[2 ∥ût − ût+1∥ log (∥wt+1∥ /αt+1 + 1)
η

− η ∥gt∥2 ∥wt+1∥]
where M̂ ≙ maxt≤T ∥ût∥. We focus őrst on bounding the sum in the second line. To do so, we őrst

provide the deőnition of ût:

Let T > 0 and set ûT ≙ uT and ût ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut if ∥gt∥ ≥ T
ût+1 otherwise

for t < T .

Hence, by deőnition we have ∥ût − ût+1∥ ≙ 0 whenever ∥gt∥ ≤ T , so

T−1

∑
t≙1

[2 ∥ût − ût+1∥ log (∥wt+1∥ /αt+1 + 1)
η

− η ∥gt∥2 ∥wt+1∥]
≤ ∑
t∶∥gt∥≥T

[2 ∥ût − ût+1∥ log (∥wt+1∥ /αt+1 + 1)
η

− ηT 2 ∥wt+1∥]
≤ ∑
t∶∥gt∥≥T

[sup
X≥0

2 ∥ût − ût+1∥ log (X/αt+1 + 1)
η

− ηT 2X]
(∗)
≤ ∑

t∶∥gt∥≥T
2 ∥ût − ût+1∥ log (2∥ût−ût+1∥αt+1η2T 2)

η

where (∗) observes that either the max is obtained atX ≙ 0, for which supX≥0
2∥ût−ût+1∥ log(X/αt+1+1)

η
−

ηT 2X ≙ 0, and otherwise the max is obtained at X ≙
2∥ût+1−ut∥
η2T 2 − αt+1 > 0, which leads to an

upperbound of

sup
X≥0

2 ∥ût − ût+1∥ log (X/αt+1 + 1)
η

− ηT 2X ≤
2 ∥ût − ût+1∥ log (2∥ût+1−ût∥αt+1η2T 2)

η

in both cases. Moreover, for any t such that ∥gt∥ ≥ T let t′ denote the smallest index greater than

139

t for which ∥gt′∥ ≥ T ; then by triangle inequality we have ∥ût − ût+1∥ ≙ ∥ut − ut′∥ ≤ ∑t′s≙t ∥us − us+1∥
and

∑
t∶∥gt∥≥T

2 ∥ût − ût+1∥ log (2∥ût−ût+1∥αt+1η2T 2)
η

≤ ∑
t∶∥gt∥≥T

∑t′s≙t 2 ∥us − us+1∥ log (4M̂
αT+1η2T 2)

η

≙
2PT log (4M̂

αT+1η2T 2)
η

.

Returning to the regret against the auxiliary comparator sequence we have

RT (û) ≤ 2M̂ log (M̂/αT+1 + 1)
η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ût∥ + η T

∑
t≙1

αt ∥gt∥2 + 2PT log (4M̂
αt+1η2T 2)
η

(a)
≤

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η
+ 2η

T

∑
t≙1

∥gt∥2 ∥ût∥ + η T

∑
t≙1

αt ∥gt∥2
(b)
≤

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η
+ η

T

∑
t≙1

αt ∥gt∥2
+ 2η

T

∑
t≙1

∥gt∥2 ∥ut∥ + 2 T

∑
t≙1

∥gt∥ ∥ût − ut∥
(c)
≤

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η
+ 2ϵG

+ 2η
T

∑
t≙1

∥gt∥2 ∥ut∥ + 2 T

∑
t≙1

∥gt∥ ∥ût − ut∥ ,
where (a) observes that M̂ ≙ maxt≤T ∥ût∥ ≤ maxt≤T ∥ut∥ ≙ M and (b) recalls η ≤ 1

G
and uses

η ∥gt∥2 ∥ût∥ ≤ η ∥gt∥2 (∥ut − ût∥ + ∥ut∥) ≤ η ∥gt∥2 ∥ut∥+∥gt∥ ∥ut − ût∥, and (c) chooses αt ≙
ϵG2

Vt log
2(Vt/G2)

for Vt ≙ 4G
2
+ ∥g∥21∶t−1 and applies Lemma A.3.4 to bound

η
T

∑
t≙1

αt ∥gt∥2 ≙ ηϵG2
T

∑
t≙1

∥gt∥2
Vt log

2 (Vt/G2)
≤ 2ηϵG2

≤ 2ϵG

Returning now to the full regret bound and recalling ût ≙ ut whenever ∥gt∥ ≥ T and ût ≙ ût+1

140

otherwise, we have

RT (u) ≤ RT (û) + T

∑
t≙1

∥gt∥ ∥ût − ut∥
≤ 2ϵG +

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ut∥ + 3 T

∑
t≙1

∥gt∥ ∥ût − ut∥
≤ 2ϵG +

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ut∥ + 3T ∑
t∶∥gt∥≤T

∥ût+1 − ut∥
(a)
≤ 2ϵG +

2M log (M/αT+1 + 1) + 2PT log (4M
αt+1η2T 2)

η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ut∥ + 3T TPT .
where (a) uses the fact that ût+1 ≙ ut′ for some t′ ≥ t, so that ∥ût+1−ut∥ ≤ ∑t′−1s≙1 ∥us+1−us∥ ≤ PT . Since

this bound holds for an arbitrary T > 0 we are free to choose a T which tightens the upperbound,

such as T ≙ 4
3ηT

:

RT (u) ≤ inf
T >0

2ϵG +
2M log (M/αT+1 + 1) + 2PT log (4M

αt+1η2T 2)
η

+ 2η
T

∑
t≙1

∥gt∥2 ∥ut∥ + T 3TPT
≤
2M log (M/αT+1 + 1) + 2PT (log (9MT 2

4αt+1
) + 2)

η

+ 2ϵG + 2η
T

∑
t≙1

∥gt∥2 ∥ut∥
≤ 2ϵG +

4 (M + PT){log (9MT 2

4αT+1
+ 1) ∨ 1}

η
+ 2η

T

∑
t≙1

∥gt∥2 ∥ut∥ .

141

Proof of Theorem 9.1.2

The full statement of the theorem is given below.

Theorem 9.1.2. For any ε > 0 and u1, . . . , uT in R
d, Algorithm 8 guarantees

RT (u) ≤ 2εG + 6
¿ÁÁÀ2(M + PT) [log (9MΛT

4ε
+ 1) ∨ 1] T∑

t≙1

∥gt∥2 ∥ut∥
+ 4G(M + PT) [log (9MΛT

4ε
+ 1) ∨ 1] .

where ΛT ≙ T
2 (4 + ∥g∥21∶T

G2) log2 (4 + ∥g∥21∶TG2) ⌈log2(√T)⌉ ≤ O (T 3 log3(T)) and M ≙maxt ∥ut∥.
Proof. Let Aη denote an instance of the algorithm in Proposition 9.1.1, wηt denote its iterates, and

let R
Aη
T (u) denote the dynamic regret of Aη. From Proposition 9.1.1, we have that for any η ≤ 1

G
,

R
Aη
T (u) ≤ 2ϵG + 4 (M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

η
+ 2η

T

∑
t≙1

∥gt∥2 ∥ut∥ ,
where αT+1 ≙

ϵG2

VT+1 log
2(VT+1/G2) and VT+1 ≙ 4G

2
+∥g∥21∶T , M ≙maxt≤T ∥ut∥, PT ≙ ∑Tt≙2 ∥ut − ut−1∥, and

ϵ > 0. The stepsize which minimizes the right-hand side of the inequality is

η∗ ≙min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¿ÁÁÁÀ2(M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

∑Tt≙1 ∥gt∥2 ∥ut∥ ,
1

G

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

for which we have

R
Aη∗

T (u) ≤ 2ϵG + 4
¿ÁÁÀ2(M + PT) [log(9MT 2

4αT+1
+ 1) ∨ 1] T

∑
t≙1

∥gt∥2 ∥ut∥
+ 2G(M + PT) [log(9MT 2

4αT+1
+ 1) ∨ 1] .

In what follows, we will match this bound up to constant factors using the iterate adding approach

proposed by Cutkosky 2019b.

Suppose that we have a collection of step-sizes S ≙ {η ∈ R ∶ 0 < η ≤ 1
G
} and suppose that on each

142

round we play wt ≙ ∑η∈S wηt where wηt is the output of Aη. Then for any η̃ ∈ S we can write

RT (u) ≙ T

∑
t≙1

⟨gt,wt − ut⟩ ≙ T

∑
t≙1

⟨gt,∑
η∈S

w
η
t − ut⟩

≙

T

∑
t≙1

⟨gt,wη̃t − ut⟩ + ∑
η≠η̃∈S

T

∑
t≙1

⟨gt,wηt − 0⟩
≙ R

Aη̃
T (u) + ∑

η≠η̃∈S

R
Aη
T (0)

≤ R
Aη̃
T (u) + 2ϵG(∣S ∣ − 1). (C.1)

Notice that since this holds for any η̃ ∈ S, it holds for the one with the lowest dynamic regret, hence

RT (u) ≤ 2ϵG(∣S ∣ − 1) +min
η∈S

R
Aη
T (u).

Thus, we need only ensure that there is some η ∈ S which is close to the optimal η∗. It is easy to

see that

η∗ ≙min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¿ÁÁÁÀ2(M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

∑Tt≙1 ∥gt∥2 ∥ut∥ ,
1

G

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Ô⇒

2

G
√
T
≤ η∗ ≤

1

G
,

so if we let S ≙ { 2k

G
√
T
∧

1
G
∶ 1 ≤ k ≤ ⌈log2 (√T)⌉}, we’ll have

ηmin ≙
2

G
√
T
≤ η∗ ≤

1

G
≙ ηmax ,

where ηmin and ηmax are the smallest and largest step-sizes in S respectively. Hence, there must be

an ηk ∈ S such that ηk ≤ η
∗ ≤ ηk+1 ≤ 2ηk. Using η̃ ≙ ηk in Equation (C.1) yields

RT (u) ≤ 2ϵG(∣S ∣ − 1) +RAηkT (u)
≤ 2ϵG ∣S ∣ + 4 (M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

ηk
+ 2ηk

T

∑
t≙1

∥gt∥2 ∥ut∥
≤ 2ϵG ∣S ∣ + 8 (M + PT) [log (9MT 2

4αT+1
+ 1) ∨ 1]

η∗
+ 2η∗

T

∑
t≙1

∥gt∥2 ∥ut∥
≙ 2ϵG ∣S ∣ + 6

¿ÁÁÀ2(M + PT) [log(9MT 2

4αT+1
+ 1) ∨ 1] T

∑
t≙1

∥gt∥2 ∥ut∥
+ 4G(M + PT) [log(9MT 2

4αT+1
+ 1) ∨ 1] .

143

The result then follows by choosing ϵ ≙ ε⌈log2(√T)⌉ ≤
ε∣S ∣ .

Proof of Proposition 9.1.4

Proposition 9.1.4. Suppose A is an online learning algorithm which guarantees

RAT (u) ≤ Õ⎛⎜⎝
¿ÁÁÀ(M2 +MPT) T∑

t≙1

∥gt∥2⎞⎟⎠ ,
for all u1, . . . , uT in R

d with maxt≤T ∥ut∥ ≤M . Then for all u1, . . . , uT in R
d, Algorithm 10 guaran-

tees

RT (u) ≤ Õ (max
k≤K
∣Ik∣√(M2 +MPT) ∥g∥21∶T)

Proof. First observe that for any interval I ≙ [a, b∥, we have

∑
t∈I

⟨gt,wt − ut⟩ ≙∑
t∈I

⟨gt,wt − ub⟩ +∑
t∈I

⟨gt, ub − ut⟩ ,
and bound the second sum as

∑
t∈I

⟨gt, b

∑
s≙t+1

us − us−1⟩ ≙ b

∑
t≙a

b

∑
s≙t+1

⟨gt, us − us−1⟩
≙

b

∑
s≙a+1

⟨ga∶s−1, us − us−1⟩ ≤
¿ÁÁÀ b

∑
s≙a+1

∥ga∶s−1∥2 b

∑
t≙a+1

∥ut − ut−1∥2

≤

¿ÁÁÀ(b

∑
t≙a+1

∥gt∥2 + b

∑
t≙a+1

b

∑
t′≠t

∥gt∥ ∥gt′∥)SI
≤

¿ÁÁÀ(b

∑
t≙a+1

∥gt∥2 + max
s∈[a,b∥ ∥gs∥2 ∣I ∣2)SI

≤

√
2 ∥g∥2a+1∶b ∣I ∣2SI ≙√2 ∥g∥2a+1∶b SI ∣I ∣.

where SI ≙ ∑bt≙a+1 ∥ut − ut−1∥2. Thus, denoting I1 ≙ [1, τ1∥, I2 ≙ [τ1 + 1, τ2∥, . . . , IK ≙ [τK−1 + 1, τK∥,

144

we can bound

T

∑
t≙1

⟨gt,wt − ut⟩ ≙ K

∑
k≙1

∑
t∈Ik

⟨gt,wt − ut⟩ ≙ K

∑
k≙1

∑
t∈Ik

⟨gt,wt − uτk⟩ + ⟨gt, uτk − ut⟩
≤

K

∑
k≙1

∑
t∈Ik

⟨gt,wt − uτk⟩ + K

∑
k≙1

√
2SIk ∥g∥2t∈Ik ∣Ik∣

≤

K

∑
k≙1

⟨∑
t∈Ik

gt,wτk − uτk⟩ +√2ST ∥g∥21∶T max
k≤K
∣Ik∣

where the last line observes that wt is őxed within each interval. From the regret guarantee of

algorithm A we have

K

∑
k≙1

⟨∑
t∈Ik

gt,wτk − uτk⟩ ≙ K

∑
k≙1

⟨g̃τk ,wτk − uτk⟩ ≤ Õ (
√(M2 +MP̂K) ∥g̃∥21∶K)

≤ Õ (max
k≤K
∣Ik∣√2(M2 +MPT) ∥g∥21∶T) ,

where the őrst line deőnes P̂K ≙ ∑Kk≙2 ∥uτk − uτk−1∥ and the last line observes P̂K ≤ PT . Hence,

T

∑
t≙1

⟨gt,wt − ut⟩ ≤ Õ (max
k≤K
∣Ik∣ (√2(M2 +MPT) ∥g∥21∶T +√2ST ∥g∥21∶T)) .

The stated bound follows by observing that ST ≤MPT ≤M
2
+MPT and hiding constants.

C.1.2 Proofs for Section 9.2 (Unbounded Losses)

The main objective of this section is to prove Theorems 9.2.1 and 9.2.3. At a high level, the strategy

is simple: we run several instances of projected gradient descent, each with a different restricted

domain WD ≙ {w ∈W ∶ ∥w∥ ≤D} and stepsize η, and then use a particular experts algorithm to

combine them. We őrst assemble a collection of core lemmas that provide the regret of the base

algorithm (Lemma C.1.2), the regret of Algorithm 11 in terms of the regret of any of the base

algorithms (Lemma C.1.3), as well as some utility lemmas (Lemmas C.1.4 to C.1.7) to help tame

some unwieldy algebraic expressions and case work. We then prove the main results Theorems 9.2.1

and 9.2.3 in Appendix C.1.2 respectively. Finally, we prove our lowerbound Theorem 9.2.2 in

Appendix C.1.

The base algorithms that we combine are instances of (projected) online gradient descent with

an additional bias term added to the update. The following lemma provides the regret template for

this algorithm.

145

Lemma C.1.2. For all t let ℓt ∶W → R be convex. Let K ≥ 1, Lt ≥ 0, and KηLt ≤ 1 for all t. Let

WD ≙ {w ∈W ∶ ∥w∥ ≤D}, w1 ≙ 0, and on each round update wt+1 ≙ Πw∈WD
(wt − η(1 +KηLt)gt),

where gt ∈ ∂ℓt(wt). Then for any u ≙ (u1, . . . , uT) in WD,

RT (u) ≤ ∥uT ∥2 + 2DPT
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(wt)∥ + 2η T

∑
t≙1

∥gt∥2
where PT ≙ ∑Tt≙2 ∥ut − ut−1∥.
Proof. The result follows easily using existing analyses. For instance, the update can be seen as

an instance of Algorithm 2 with ψt(w) ≙ 1
2η
∥w∥2, ϕt(w) ≙ KηLt ⟨gt,w⟩ for gt ∈ ∂ℓt(wt), domain

WD ≙ {w ∈W ∶ ∥w∥ ≤D}, and Mt(w) ≙ w for all t. Letting w1 ≙ 0 and applying Lemma 4.1.2, we

have:

RT (u) ≤ ψT+1(uT) + T

∑
t≙2

⟨∇ψt(wt), ut−1 − ut⟩ +Kη T

∑
t≙1

Ltℓt(ut)
+

T

∑
t≙1

⟨gt +KηLtgt,wt −wt+1⟩ −Dψt(wt+1∣wt) −KηLtℓt(wt)
≤
∥uT ∥2
2η

+∑
t≙2

D

η
∥ut − ut−1∥ +Kη T

∑
t≙1

Lt [ℓt(ut) − ℓt(wt)∥
+

T

∑
t≙1

(1 +KηLt) ⟨gt,wt −wt+1⟩ −Dψt(wt+1∣wt)
(a)
≤
∥uT ∥2 + 2DPT

2η
+Kη

T

∑
t≙1

Lt [ℓt(ut) − ℓt(wt)∥
+

T

∑
t≙1

(1 +KηLt) ⟨gt,wt −wt+1⟩ − ∥wt+1 −wt∥2
2η

(b)
≤
∥uT ∥2 + 2DPT

2η
+Kη

T

∑
t≙1

Lt [ℓt(ut) − ℓt(wt)∥ + η
2

T

∑
t≙1

(1 +KηLt)2 ∥gt∥2
(c)
≤
∥uT ∥2 + 2DPT

2η
+Kη

T

∑
t≙1

Lt [ℓt(ut) − ℓt(wt)∥ + 2η T

∑
t≙1

∥gt∥2

the (a) observes that Dψt(wt+1∣wt) ≥ ∥wt+1−wt∥22η
by 1

η
-strong convexity of ψ, (b) is Fenchel-Young

inequality, and (c) uses KηLt ≤ 1.

The following lemma provides a generic regret bound for Algorithm 11. The take-away is that

the regret will scale with the regret of any of the experts up to two extra terms CS and ΛT (η,D),
which we will later ensure are small.

146

Lemma C.1.3. For any τ ≙ (η,D) ∈ S with η ≤ 1
KLmax

and sequence u ≙ (u1, . . . , uT) in W

satisfying ∥ut∥ ≤D for all t, Algorithm 11 guarantees

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) + ∥uT ∥2 + 2DPT + 4kD2ΛT (τ)
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4η T

∑
t≙1

∥g(τ)t ∥2

where k ≥ 9/2 and

CS
def
≙
∑τ̃∈S µτ̃
∑τ̃∈S µ2τ̃

, ΛT (τ) def
≙ log(∑τ̃∈S µ2τ̃

µ2τ
) + 1.

Proof. Let τ ≙ (η,D) ∈ S and let Aτ denote an algorithm which after each round updates its

parameters using

w
(τ)
t+1 ≙ Πw∈W ∶∥w∥≤D (w(τ)t − η(1 +KηLt)g(τ)t)

for g
(τ)
t ∈ ∂ℓt(w(τ)t). Algorithm 11 is constructed as a collection of algorithms Aτ , with an multi-

scale experts algorithm (Algorithm 14) to combine their predictions. First, observe that the regret

decomposes into the regret of any expert Aτ plus the regret of the experts algorithm relative to

expert Aτ :

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

ℓt (w(τ)t) − ℓt(ut)
´¹¹¹¸¹¹¶

≙∶R
Aτ
T
(u)

+

T

∑
t≙1

ℓt(wt) − ℓt (w(τ)t)

≙ RAτT (u) + T

∑
t≙1

ℓt (∑
τ̃∈S

pt(τ̃)ℓt(w(τ̃)t)) − ℓt (w(τ)t)

147

and by convexity of ℓt and Jensen’s inequality:

≤ RAτT (u) + T

∑
t≙1

[∑
τ̃∈S

pt(τ̃)ℓt (w(τ̃)t)] − ℓt (w(τ)t)
≙ RAτT (u) + T

∑
t≙1

∑
τ̃∈S

ℓt (w(τ̃)t) [pt(τ̃) − 1{τ ≙ τ̃}∥
(a)
≙ RAτT (u)
+

T

∑
t≙1

∑
τ̃∈S

[ℓt (w(τ̃)t) − ℓt(w̃t)] [pt(τ̃) − p∗τ(τ̃)∥
+

T

∑
t≙1

∑
τ̃∈S

ℓt(w̃t)(pt(τ̃) − p∗τ(τ̃))
(b)
≙ RAτT (u) + T

∑
t≙1

∑
τ̃∈S

[ℓt (w(τ̃)t) − ℓt(w̃t)] [pt(τ̃) − p∗τ(τ̃)∥
(c)
≙ RAτT (u) + T

∑
t≙1

⟨ℓ̃t, pt − p∗τ ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≙∶RMeta

T
(p∗τ)

≙ RAτT (u) +RMeta
T (p∗τ), (C.2)

where w̃t is an arbitrary reference point with ∥w̃t∥ ≤Dmin (and hence is in the domain of all of the

experts Aτ), (a) deőnes p∗τ(τ̃) ≙ 1 if τ̃ ≙ τ and 0 otherwise, (b) observes that ∑τ̃∈S ℓt(w̃t)(pt(τ̃) −
p∗τ(τ̃)) ≙ ℓt(w̃t)∑τ̃∈S pt(τ̃) − p∗τ(τ̃) ≙ 0, and (c) deőnes ℓ̃t ∈ R

∣S ∣ with ℓ̃t,τ ≙ ℓt(w(τ)t) − ℓt(w̃t).
Now for any τ ≙ (η,D) ∈ S with D ≥maxt ∥ut∥, we have via Lemma C.1.2 that

RAτT (u) ≤ ∥uT ∥2 + 2DPT2η
+Kη

T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 2η T

∑
t≙1

∥g(τ)t ∥2 . (C.3)

To bound RMeta
T (p∗τ), observe that for any τ̃ ≙ (η̃, D̃), we have

ℓ̃t,τ̃ ≙ ℓt(w(τ̃)t) − ℓt(w̃t) ≤ ∥∇ℓt(w(τ̃)t)∥ ∥w(τ̃)t − w̃t∥
≤ (Gmax +LmaxD̃)2D̃,

148

and so with µτ̃ ≙
1

2D̃(Gmax+D̃/η̃) and η̃ ≤ 1
KLmax

≤
1

Lmax
we have

µτ̃ ℓt,τ̃ ≤
1

2D̃ (Gmax + D̃/η̃)2D̃ (Gmax +LmaxD̃)
≤

1(Gmax +LmaxD̃) (Gmax +LmaxD̃)
≙ 1,

so these choices meet the assumptions of Theorem B.2.1 and we have:

RMeta
T (p∗τ) ≤ ∑

τ̃∈S

p∗τ(τ̃) [k [log (p∗τ(τ̃)/p1τ̃) + 1∥µτ̃
+ µτ̃

T

∑
t≙1

ℓ̃
2

tτ̃] + 2k∑
τ̃∈S

p1τ̃

µτ̃

for k ≥ 9/2. Recalling that p∗τ(τ̃) ≙ 1 when τ̃ ≙ τ and 0 otherwise and that τ ≙ (D,η), the őrst sum

is bound as

k [log (p∗τ(τ)/p1τ) + 1∥
µτ

+ µτ

T

∑
t≙1

ℓ̃
2

tτ ≙ 2kD (Gmax +
D

η
) [log (1/p1τ) + 1∥ + η

2D (Gmaxη +D)
T

∑
t≙1

ℓ̃
2

t,τ

≤ 2kD (Gmax +
D

η
) [log (1/p1τ) + 1∥ + η

2D2

T

∑
t≙1

∥∇ℓt(w(τ)t)∥2 4D2

≙ 2kD (Gmax +
D

η
) [log (1/p1τ) + 1∥ + 2η T

∑
t≙1

∥g(τ)t ∥2 ,
and so with p1,τ ≙

µ2τ
∑τ̃∈S µ

2

τ̃

, we have

RMeta
T (p∗τ) ≤ 2kD (Gmax +

D

η
)[log(∑τ̃∈S µ2τ̃

µ2τ
) + 1] + 2η T

∑
t≙1

∥g(τ)t ∥2 + 2k∑
τ̃∈S

µτ̃

∑τ̃∈S µ2τ̃
.

Combining this with Equations (C.2) and (C.3) yields the stated result:

RT (u) ≤ ∥uT ∥2 + 2DPT
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4η T

∑
t≙1

∥g(τ)t ∥2
+ 2kD (Gmax +

D

η
)[log(∑τ̃∈S µ2τ̃

µτ
) + 1] + 2k∑τ̃∈S µτ̃∑τ̃∈S µ2τ̃

≙ 2kCS + 2kDGmaxΛT (τ) + ∥uT ∥2 + 2DPT + 4kD2ΛT (τ)
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4η T

∑
t≙1

∥g(τ)t ∥2

149

where the last line deőnes the shorthand notations

CS
def
≙
∑τ̃∈S µτ̃
∑τ̃∈S µ2τ̃

and ΛT (τ) def
≙ log(∑τ̃∈S µ2τ̃

µ2τ
) + 1.

Next, we provide bounds on the terms terms CS and ΛT in terms of the hyperparameter ranges[ηmin, ηmax∥ and [Dmin,Dmax∥ that the meta-algorithm tunes the hyperparameters over.

Lemma C.1.4. Let 0 < ηmin ≤ ηmax, 0 < Dmin ≤ Dmax, and deőne the hyperparameter set S ≙

Sη × SD for Sη ≙ {ηi ≙ [ηmin2
i
∧ ηmax] ∶ i ≥ 0} and SD ≙ {Dj ≙ [Dmin2

j
∧Dmax] ∶ j ≥ 0}. For each

τ ≙ (η,D) ∈ S, let µτ ≙
1

2D(Gmax+D/η) . Then

CS
def
≙
∑τ∈S µτ
∑τ∈S µ2τ

≤ 2
√
TDmin (Gmax +

Dmin

ηmax

)
and for any τ ∈ S,

ΛT (τ) def
≙ log(∑τ̃∈S µ2τ̃

µ2τ
) + 1 ≤ log(24η2maxD

4

η2minD
4
min

∧
6 ∣Sη ∣D2

D2
min

) + 1
Proof. For the őrst statement, we have

CS ≙
∑τ̃∈S µτ̃
∑τ̃∈S µ2τ̃

≤

¿ÁÁÀ T

∑τ̃∈S µ2τ̃
≤

¿ÁÁÀ T

µ2(ηmax,Dmin)
≙

√
T (2Dmin)2 (Gmax +Dmin/ηmax)2

≙ 2
√
TDmin (Gmax +

Dmin

ηmax

)
where the őrst inequality applies Cauchy-Schwarz inequality. Moreover, for any τ ≙ (η,D) ∈ S we

150

have

∑τ̃∈S µ2τ̃
µ2τ

≙
1

µ2(η,D)

⎡⎢⎢⎢⎢⎣ ∑
(ηi,Dj)∈S

1(2Dj)2 [Gmax +Dj/ηi∥2
⎤⎥⎥⎥⎥⎦

≤
1

4µ2(η,D)
∑

(ηi,Dj)∈S
η2i
D4
j

≙
1

4µ2(η,D)
∑

(ηi,Dj)∈S
22iη2min

D4
min2

4j

≙
η2min

4µ2(η,D)D4
min

⌈log2(ηmax/ηmin)⌉
∑
i≙0

⌈log2(Dmax/Dmin)⌉
∑
j≙0

22i

24j

≤
η2min

4µ2(η,D)D4
min

22⌈log2(ηmax/ηmin)⌉+2 − 1
3

1

1 − 1
16

≤
η2min

4µ2(η,D)D4
min

2log2(η2max/η2min
)+4
− 1

3

16

15

≤
η2min

4µ2(η,D)D4
min

16
η2max

η2min

16

45

≤
6η2max

4µ2(η,D)D4
min

≙
3η2max

2µ2(η,D)D4
min

At the same time, we can also bound this term as

∑τ̃∈S µ2τ̃
µ2τ

≙
1

µ2(η,D)

⎡⎢⎢⎢⎢⎣ ∑
(ηi,Dj)∈S

1(2Dj)2 [Gmax +Dj/ηi∥2
⎤⎥⎥⎥⎥⎦

≤
1

4µ2(η,D)
∑

(ηi,Dj)∈S
1

D2
jG

2
max

≤
∣Sη ∣

4µ2(η,D)G2
max

⌈log2(Dmax/Dmin)⌉
∑
j≙0

1

D2
min2

2j

≤
∣Sη ∣

4µ2(η,D)G2
maxD

2
min

1

1 − 1
4

≤
4 ∣Sη ∣

4 ⋅ 3µ2(η,D)G2
maxD

2
min

≙
∣Sη ∣

3µ2(η,D)G2
maxD

2
min

151

Hence,

ΛT (η,D) ≙ log(∑τ̃ µτ̃
µ2τ
) + 1

≤ log
⎛⎝[3η

2
max

2D2
min

∧
∣Sη ∣

3G2
max

] 1

µ2(η,D)D2
min

⎞⎠ + 1
≙ log([3η2max

2D2
min

∧
∣Sη ∣

3G2
max

] (2D)2 [Gmax +D/η∥2
D2

min

) + 1.
Now if Gmax ≤D/η, we have

ΛT (η,D) ≤ log(3 ⋅ 4 ⋅ η2maxD
2 [Gmax +D/η∥2
2D4

min

) + 1
≤ log(6η2maxD

2
⋅ (2D/η)2

D4
min

) + 1
≤ log(24η2maxD

4

η2minD
4
min

) + 1
and otherwise

ΛT (η,D) ≤ log(4 ∣Sη ∣D2 [Gmax +D/η∥2
3G2

maxD
2
min

) + 1
≤ log(6 ∣Sη ∣D2G2

max

G2
maxD

2
min

) + 1
≙ log(6 ∣Sη ∣D2

D2
min

) + 1.
Thus, we can bound

ΛT (η,D) ≤ log(24η2maxD
4

η2minD
4
min

∧
6 ∣Sη ∣D2

D2
min

) + 1

Lemma C.1.5 provides a simple but tedius calculation which we will use a few times in the proof

of Theorem 9.2.1.

Lemma C.1.5. Let ℓt be (Gt, Lt)-quadratically bounded, c1, c2 ≥ 0, u,w ∈ W , and gt ∈ ∂ℓt(w).
Assume ∥w∥ ≤D and ∥u∥ ≤D. Then

c1Lt [ℓt(u) − ℓt(w)∥ + c2 ∥gt∥2 ≤ 3(c1 + c2) (G2
t +L

2
tD

2)

152

Proof. Since ℓt is (Gt, Lt)-quadratically bounded, and gt ∈ ∂ℓt(w) where ∥w∥ ≤D we have

∥gt∥2 ≤ (Gt +Lt ∥w∥)2 ≤ 2G2
t + 2L

2
t ∥w∥2 ≤ 2G2

t + 2L
2
tD

2.

Moreover, letting ∇ℓt(u) ∈ ∂ℓt(u) and ∥u∥ ≤D we have

Lt (ℓt(u) − ℓt(w)) ≤ Lt ∥∇ℓt(u)∥ ∥u −w∥
≤ 2DLt ∥∇ℓt(u)∥
≤ 2DLt (Gt +LtD)
≙ 2DLtGt + 2L

2
tD

2

≤ G2
t +L

2
tD

2
+ 2L2

tD
2

≙ G2
t + 3L

2
tD

2.

Thus,

c1Lt (ℓt(u) − ℓt(w)) + c2 ∥gt∥2 ≤ (c1 + 2c2)G2
t + (3c1 + 2c2)L2

tD
2

≤ 3(c1 + c2) (G2
t +L

2
tD

2)

Lastly, we provide two lemmas which let us assume that there is a τ ≙ (η,D) ∈ S for which
1
2
D ≤M ≙ maxt ∥ut∥ ≤ D by showing that the regret is trivially well-controlled whenever M is “too

bigž (Lemma C.1.6) or “too smallž (Lemma C.1.7).

Lemma C.1.6. For all t let ℓt be a (Gt, Lt)-quadratically bounded convex function for Gt ∈ [0,Gmax∥
and Lt ∈ [0, Lmax∥. Let ε > 0, Dmax ≙ ε2

T , and let u ≙ (u1, . . . , uT) be an arbitrary sequence in W

such that M ∶≙maxt ∥ut∥ ≥Dmax. Then for any w1, . . . ,wT with ∥wt∥ ≤Dmax,

T

∑
t≙1

ℓt(wt) − ℓt(ut) ≤ 2 (GmaxM +LmaxM
2) log2 (M

ε
) .

153

Proof. Let gt ∈ ∂ℓt(wt) and observe that

T

∑
t≙1

ℓt(wt) − ℓt(ut) ≤ T

∑
t≙1

∥gt∥ ∥wt − ut∥
≤

T

∑
t≙1

∥gt∥ (Dmax + ∥ut∥)
≤ 2M

T

∑
t≙1

∥gt∥
≤ 2M (Gmax +LmaxDmax)T
≤ 2M (Gmax +LmaxM)T
≤ 2 (GmaxM +LmaxM

2) log2 (M
ε
) ,

where the last line uses M ≥ ε2T Ô⇒ T ≤ log2 (Mε).
Lemma C.1.7. For all t let ℓt be a (Gt, Lt)-quadratically bounded convex function for Gt ∈ [0,Gmax∥
and Lt ∈ [0, Lmax∥. Let ε > 0, Dmin ≙

ε
T
, ηmax ≙

1
KLmax

, and ηmin ≙
ϵ

K(Gmax+ϵLmax)T . Let wt ∈ W

be the outputs of the algorithm characterized in Lemma C.1.3 with η ≙ ηmin and D ≙ Dmin, and let

u ≙ (u1, . . . , uT) be an arbitrary sequence in W with M ≙maxt ∥ut∥ ≤Dmin. Then

RT (u) ≤ (Gmax + ϵLmax) [K(M + PT) + ϵCT ∥
where CT ≤ O (log(log(Gmax

ϵLmax
))

T
).

Proof. For M ≤Dmin, we can apply Lemma C.1.3 with τ ≙ (ηmin,Dmin) to get

RT (u) ≤ 2kCS + 2kDminGmaxΛT (τ) + ∥uT ∥2 + 2DminPT + 4kD
2
minΛT (τ)

2ηmin

+Kηmin

T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4ηmin

T

∑
t≙1

∥g(τ)t ∥2 ,
where µτ̃ ≙

1

2D̃(Gmax+D̃/η̃) for any τ̃ ≙ (η̃, D̃) ∈ S, k ≥ 9/2, and

CS
def
≙
∑τ̃∈S µτ̃
∑τ̃∈S µ2τ̃

, ΛT (τ) ≙ ΛT (ηmin,Dmin) def
≙ log(∑τ̃∈S µ2τ̃

µ(ηmin,Dmin)2
) + 1.

154

Observe that with M ≙maxt ∥ut∥ ≤Dmin and Dmin

ηmin

≙K(Gmax + ϵLmax), we have

∥uT ∥2 + 2DminPT + 4kD
2
minΛT (τ)

2ηmin

≤
Dmin

ηmin

1

2
(∥uT ∥ + 2PT + 4kDminΛT (τ))

≙
1

2
K(Gmax + ϵLmax)(∥uT ∥ + 2PT + 4k ϵΛT (τ)

T
) .

Moreover, by Lemma C.1.5 we have

T

∑
t≙1

KηminLt [ℓt(ut) − ℓt(w(τ)t)] + 4ηmin ∥g(τ)t ∥2 ≤ ηmin

T

∑
t≙1

3(K + 4) (G2
t +L

2
tD

2
min)

≤ 3(K + 4)ϵ (G2
max +L

2
maxD

2
min)

K(Gmax + ϵLmax)
≤
3(K + 4)

K
(ϵGmax +

ϵ2Lmax

T 2
)

Plugging in the previous two displays back into the full regret bound yields

RT (u) ≤ 2kCS + 2kϵGmax
ΛT (τ)
T

+
1

2
K(Gmax + ϵLmax)(∥uT ∥ + 2PT + 4k ϵΛT (τ)

T
)

+
3(K + 4)

K
[ϵGmax +

Lmaxϵ
2

T 2
]

≤ 2kCS + ϵGmax [3(K + 4)
K

+
(K + 1)2kΛT (τ)

T
] + ϵ2Lmax [3(K + 4)

KT 2
+
2kKΛT (τ)

T
]

+K(Gmax + ϵLmax) [M + PT ∥ .
Finally, Lemma C.1.4 bounds

2kCS ≤ 2k ⋅ 2
√
TDmin (Gmax +

Dmin

ηmax

)
≤ 4k
√
T
ϵ

T
[Gmax +

KϵLmax

T
]

≤
4k (ϵGmax +Kϵ

2Lmax/T)√
T

155

and

ΛT (ηmin,Dmin) ≤ log (6 ∣Sη ∣) + 1 ≤ log (∣Sη ∣) + 3
≤ log (⌈log2 (TGmax

ϵLmax

)⌉ + 1) + 3
≤ log (log2 (TGmax

ϵLmax

) + 2) + 3

Plugging these back in above:

RT (u) ≤ ϵGmax(K + 4) [3
K
+

k√
T
+
2kΛT (ηmin,Dmin)

T
]

+ ϵ2Lmax(K + 4) [3

KT 2
+

4k

T 3/2 +
2kΛT (ηmin,Dmin)

T
]

+K(Gmax + ϵLmax) [M + PT ∥
≤ CT (ϵGmax + ϵ

2Lmax) +K(Gmax + ϵLmax) [M + PT ∥
≙ (Gmax + ϵLmax) [K(M + PT) + ϵCT ∥

where

CT ≤ (K + 4)⎛⎜⎝
3

K
+

4k√
T
+

2k (log (log2 (TGmax

ϵLmax
) + 2) + 3)

T

⎞⎟⎠
≤ O
⎛⎜⎝
log (log (Gmax

ϵLmax
))

T

⎞⎟⎠

156

Proof of Theorem 9.2.1

Theorem 9.2.1. For all t let ℓt ∶W → R be a (Gt, Lt)-quadratically bounded convex function with

Gt ∈ [0,Gmax∥ and Lt ∈ [0, Lmax∥. Let ϵ > 0, K ≥ 8, βt ≙ 1− exp (−1/T) for all t, and for any i, j ≥ 0

let Dj ≙
ϵ
T
[2j ∧ 2T] and ηi ≙ [ϵ2i

K(Gmax+ϵLmax)T ∧ 1
KLmax

], and let S ≙ {(ηi,Dj) ∶ i, j ≥ 0}. For each

τ ≙ (η,D) ∈ S let µτ ≙
1

2D(Gmax+D/η) , and set p1(τ) ≙ µ2τ
∑τ̃∈S µ

2

τ̃

. Then for any u ≙ (u1, . . . , uT) in W ,

Algorithm 11 guarantees

RT (u) ≤ O⎛⎝[Gmax + (M + ϵ)Lmax][(M + ϵ)Λ∗T + PT] +
¿ÁÁÀ(M2Λ∗T +MPT) T∑

t≙1

G2
t +L

2
tM

2,
⎞⎠.

where PT ≙ ∑Tt≙2 ∥ut − ut−1∥, M ≙ maxt ∥ut∥, and Λ∗T ≤ O (log (MT log(T)
ϵ

) + log (log (Gmax

ϵLmax
))).

Moreover, when the losses are Lt-smooth, the bound automatically improves to

RT (u) ≤ O⎛⎝[Gmax + (M + ϵ)Lmax][(M + ϵ)Λ∗T + PT]
+

¿ÁÁÀ(M2Λ∗T +MPT) [T∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥ ∧ T

∑
t≙1

G2
t +L

2
tM

2]⎞⎠.
Proof. First observe that we can assume that there is a τ ≙ (η,D) ∈ S for which D ≥maxt ∥ut∥ ≙M ,

since otherwise using Lemma C.1.6 with ε ≙ ϵ
T

the regret is bounded as

RT (u) ≤ 2M (Gmax +MLmax) log (MT

ϵ
) . (C.4)

Likewise, if M ≤Dmin then by Lemma C.1.7 we have

RT (u) ≤ (Gmax +Lmaxϵ) [K(M + PT) + ϵCT ∥ , (C.5)

where CT ≤ O (log(log(Gmax

ϵLmax
))

T
). Otherwise, we have M ∈ [Dmin,Dmax∥, in which case there is a

Dj ≙
ϵ2j

T
for which Dj ≥M ≥ Dj−1 ≙

1
2
Dj , so for any τ ≙ (η,Dj) ∈ S we can apply Lemma C.1.3 to

get

RT (u) ≤ 2kCS + 2kDjGmaxΛT (τ) + ∥uT ∥2 + 2DjPT + 4kD
2
jΛT (τ)

2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4η T

∑
t≙1

∥g(τ)t ∥2 ,

157

where g
(τ)
t ∈ ∂ℓt(w(τ)t), PT ≙ ∑Tt≙2 ∥ut − ut−1∥, and

CS ≙
∑τ̃∈S µτ̃
∑τ̃∈S µτ̃

ΛT (η,Dj) ≙ log⎛⎝∑τ̃∈S µ
2
τ̃

µ2(η,Dj)
⎞⎠ + 1

≙ log(D2
j [Gmax +

Dj

η
]2∑

τ̃∈S

µ2τ̃) + 1
≤ log((2M)2 [Gmax +

2M

ηmin

]2∑
τ̃∈S

µ2τ̃) + 1
≙ ΛT (ηmin,2M).

Thus, bounding Dj ≤ 2M and denoting ΩT ∶≙ ∑Tt≙1KLt [ℓt(ut) − ℓt(w(τ)t)] + 4 ∥g(τ)t ∥2, we have:

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2 (1 + 16kΛT (ηmin,2M)) + 4MPT

2η

η
T

∑
t≙1

[KLt [ℓt(ut) − ℓt(w(τ)t)] + 4 ∥g(τ)t ∥2]
´¹¹¸¹¹¹¶

≙∶ΩT

. (C.6)

Next, we show that there is an η for which the above expression is well-controlled.

Observe that choosing η optimally in Equation (C.6) would yield

η∗ ≙

√
M2(1 + 16kΛT (ηmin,2M)) + 4MPT

2ΩT
.

If η∗ ≥ ηmax, then choosing η ≙ ηmax yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2 (1 + 16kΛT (ηmin,2M)) + 4MPT

2ηmax

+ η∗ΩT

≙ 2kCS + 4kMGmaxΛT (ηmin,2M) + KLmax

2
[M2(1 + 16kΛT (ηmin,2M)) + 4MPT]

+

√
1

2
[M2 (1 + 16kΛT (ηmin,2M)) + 4MPT ∥ΩT . (C.7)

158

Similarly, if η∗ ≤ ηmin, then choosing η ≙ ηmin yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2 (1 + 16kΛT (ηmin,2M)) + 4MPT

2η∗
+ ηminΩT

≙ 2kCS + 4kMGmaxΛT (ηmin,2M) +
√

1

2
[M2 (1 + 16kΛT (ηmin,2M)) + 4MPT ∥ΩT

+
ϵΩT

K (Gmax + ϵLmax)T .
Observe that by Lemma C.1.5, we have

ΩT ≙
T

∑
t≙1

KLt [ℓt(ut) − ℓt(w(τ)t)] + 4 ∥g(τ)t ∥2

≤

T

∑
t≙1

3(K + 4) (G2
max +L

2
maxD

2
j)

≤ 3(K + 4) (G2
max + 4M

2L2
max)T.

Thus

ϵΩT

K (Gmax + ϵLmax)T ≤
ϵ ⋅ 3(K + 4) (G2

max + 4M
2L2

max)T
K (Gmax + ϵLmax)T

≤
3(K + 4)

K
(ϵGmax + 4M

2Lmax)
≤ (K + 4) (ϵGmax + 4M

2Lmax)
for K ≥ 3. so overall when η∗ ≤ ηmin the regret can be bounded as

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) +
√

1

2
[M2 (1 + 16kΛT (ηmin,2M)) + 4MPT ∥ΩT

+ (K + 4)ϵGmax + 4(K + 4)M2Lmax. (C.8)

Finally, if η∗ ∈ [ηmin, ηmax∥, then there is an ηi ≙
2iϵ

K(Gmax+ϵLmax)T such that ηi ≤ η
∗ ≤ ηi+1 ≙ 2ηi, so

choosing η ≙ ηi Equation (C.6) is bounded by

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2 (1 + 16kΛT (ηmin,2M)) + 4MPT

η∗
+ η∗ΩT

≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + 3
√

1

2
[M2 (1 + 16kΛT (ηmin,2M)) + 4MPT ∥ΩT . (C.9)

159

Now combining Equations (C.4), (C.5) and (C.7) to (C.9), we have

RT (u) ≤ 2M (Gmax +MLmax) log (MT

ϵ
)

+ (Gmax +Lmaxϵ) [K(M + PT) + ϵCT ∥
+ 2kCS + 4kMGmaxΛT (ηmin,2M)
+ 3

√
1

2
[M2 (1 + 16kΛT (ηmin,2M)) + 4MPT ∥ΩT

+ (K + 4)ϵGmax + 4(K + 4)M2Lmax

+
KLmax

2
[M2(1 + 16kΛT (ηmin,2M)) + 4MPT] .

From Lemma C.1.4 we have

CS ≤ 2
√
TDmin (Gmax +

Dmin

ηmax

)
≤
2K (ϵGmax + ϵ

2Lmax)√
T

ΛT (ηmin,2M)
≤ log(6 ∣S ∣ (2M)2

D2
min

) + 1
≤ log

⎛⎜⎝
24M2T 2 (⌈log2 (TGmax

ϵLmax
)⌉ + 1)

ϵ2

⎞⎟⎠ + 1
≤ 2 log (5MT

ϵ
) + log (log2 (TGmax

ϵLmax

) + 2) + 1
Hence, hiding constants we may write

RT (u) ≤ O⎛⎝Gmax((M + ϵ)Λ∗T + PT) +Lmax [(M + ϵ)2Λ∗T + (M + ϵ)PT] +√(M2Λ∗T +MPT)ΩT ,⎞⎠.
where Λ∗T ≤ O (log (MT

ϵ
) + log (log (TGmax

ϵLmax
))) ≤ O (log (MT log(T)

ϵ
) + log (log (Gmax

ϵLmax
))). Finally, the

proof is completed by observing that if the ℓt are Lt-smooth, then using the self-bounding property

160

we have ∥g(τ)t ∥2 ≤ 2Lt (ℓt(w(τ)t) − ℓ∗t) for ℓ∗t ≙minw∈W ℓt(w), and thus

ΩT ≙
T

∑
t≙1

KLt [ℓt(ut) − ℓt(w(τ)t)] + 4 T

∑
t≙1

∥g(τ)t ∥2

≤

T

∑
t≙1

KLt [ℓt(ut) − ℓt(w(τ)t)] + 8 T

∑
t≙1

Lt [ℓt(w(τ)t) − ℓ∗t]
≤

T

∑
t≙1

KLt [ℓt(ut) − ℓ∗t ∥
where the second-to-last line chooses K ≥ 8, and simultaneously we have using Lemma C.1.5 that

ΩT ≤ 3(K + 4) T∑
t≙1

[G2
t +L

2
tD

2
j]

≤ 3(K + 4) T∑
t≙1

[G2
t + 4L

2
tM

2] ,
and so we have ΩT ≤ O (∑Tt≙1Lt [ℓt(ut) − ℓ∗t ∥ ∧∑Tt≙1G2

t +L
2
tM

2).
Proof of Theorem 9.2.3

Theorem 9.2.3. For all t let ℓt ∶ W → R be (Gt, Lt)-quadratically bounded and Lt-smooth con-

vex function with Gt ∈ [0,Gmax∥ and Lt ∈ [0, Lmax∥. Let ϵ > 0, K ≥ 8, and for any i, j ≥ 0 let

Dj ≙
ϵ√
T
[2j ∧ 2T] and ηi ≙

1

KLmax

√
T
[2i ∧√T], and let S ≙ {(ηi,Dj) ∶ i, j ≥ 0}. Then for any

u ≙ (u1, . . . , uT) in W , Algorithm 11 guarantees

RT (u) ≤ O⎛⎝Gmax(M + ϵ)Λ∗T +Lmax(M + ϵ)2Λ∗T +Lmax(M + ϵ)PT
+

¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2 +
¿ÁÁÀ(M2Λ∗T +MPT) T∑

t≙1

Lt [ℓt(ut) − ℓ∗t ∥⎞⎠,

where M ≙maxt ∥ut∥, PT ≙ ∑Tt≙2 ∥ut − ut−1∥, and Λ∗T ≤ O (log(M
√
T log(√T)
ϵ

)).
Proof. By Lemma C.1.6, we can assume that there is a τ ≙ (η,D) ∈ S for which D ≥maxt ∥ut∥ ≙M ,

since otherwise the regret is bounded as

RT (u) ≤ 2M (Gmax +MLmax) log(M
√
T

ϵ
) . (C.10)

Hence, we can assume there is a (η,D) ∈ S which has M ≤ D. For any such (η,D) ∈ S, we can

161

apply Lemma C.1.3 to get

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) + ∥uT ∥2 + 2DPT + 4kD2ΛT (τ)
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 4η T

∑
t≙1

∥g(τ)t ∥2 ,
where g

(τ)
t ∈ ∂ℓt(w(τ)t), PT ≙ ∑Tt≙2 ∥ut − ut−1∥ and

CS
def
≙
∑τ̃∈S µτ̃
∑τ̃∈S µ2τ̃

, ΛT (τ) def
≙ log(∑τ̃∈S µ2τ̃

µ2τ
) + 1,

where for any τ̃ ≙ (D̃, η̃) ∈ S we deőne µ(η̃,D̃) ≙ 1

2D̃(Gmax+D̃/η̃) . Using the self-bounding prop-

erty of smooth functions, for any g
(τ)
t ∈ ∂ℓt(w(τ)t) we have ∥g(τ)t ∥2 ≤ 2Lt [ℓt(w(τ)t) − ℓ∗t] for ℓ∗t ≙

argminw∈W ℓt(w), so the last line is bound as

Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓt(w(τ)t)] + 8η T

∑
t≙1

Lt [ℓt(w(τ)t) − ℓ∗t] ≤Kη T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥
for K ≥ 8. Hence,

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) + ∥uT ∥2 + 2DPT + 4kD2ΛT (τ)
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥ (C.11)

Now suppose that M ≤Dmin, then choosing τ ≙ τmin ≙ (ηmin,Dmin) we would have

RT (u) ≤ 2kCS + 2kDminGmaxΛT (τmin) + ∥uT ∥2 + 2DminPT + 4kD
2
minΛT (τmin)

2ηmin

+Kηmin

T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥
≤ 2kCS + 2kDminGmaxΛT (τmin) + Dmin

ηmin

1

2
(M + 2PT + 4kDminΛT (τmin))

+
1√

TLmax

T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥
≤ 2kCS + 2kGmax

ϵΛT (τmin)√
T

+KϵLmax (M + PT + 2k ϵΛT (τmin)√
T

)
+

¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2 (C.12)

162

where the last line applies Cauchy-Schwarz inequality, observes that Dmin/ηmin ≙ KϵLmax, and

recalls Dmin ≙
ϵ√
T

. Finally, assume that M ∈ [Dmin,Dmax∥, then there is a Dj ≙
ϵ2j√
T

for which

Dj ≥M ≥Dj−1 ≙
1
2
Dj . Then, choosing τ ≙ (η,Dj), Equation (C.11) yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2
+ 4MPT + 16kM

2ΛT (ηmin,2M)
2η

+Kη
T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥ (C.13)

where we’ve observed that

Λ(η,Dj) ≙ log(∑τ̃∈S µ2τ̃
µ(η,Dj)

) + 1
≙ log(∑

τ̃∈S

µ2τ̃D
2
j [Gmax +Dj/η∥2) + 1

≤ log(∑
τ̃∈S

µ2τ̃(2M)2 [Gmax + 2M/η∥2) + 1
≙ ΛT (η,2M)

so it remains to show that there is an η that favorably balances the last two terms of Equation (C.13).

Observe that the optimal choice for η would be

η∗ ≙

¿ÁÁÀM2(1 + 16kΛT (ηmin,2M)) + 4MPT

2K∑Tt≙1Lt [ℓt(ut) − ℓ∗t ∥ .

If η∗ ≤ ηmin then choosing η ≙ ηmin we have

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2(1 + 16kΛT (ηmin,2M) + 4MPT

2η∗

+Kηmin

T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥
≤ 2kCS + 4kMGmaxΛT (ηmin,2M) +

√
K

2
(M2(1 + 16kΛT (ηmin,2M)) + 4MPT)ΩT

+

¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2, (C.14)

where the last line deőnes the short-hand notation ΩT ≙ ∑Tt≙1Lt [ℓt(ut) − ℓ∗t ∥ and uses Cauchy-

Schwarz inequality to bound Kηmin∑Tt≙1Lt [ℓt(ut) − ℓ∗t ∥ ≤ √∑Tt≙1 [ℓt(ut) − ℓ∗t ∥2. Likewise, if η∗ ≥

163

ηmax then by choosing η ≙ ηmax we have via Equation (C.13) that

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + M2
+ 4MPT + 16kM

2ΛT (ηmin,2M)
2ηmax

+Kη∗
T

∑
t≙1

Lt [ℓt(ut) − ℓ∗t ∥
≙ 2kCS + 4kMGmaxΛT (ηmin,2M) +KLmax (M2(1 + 8kΛT (ηmin,2M)) + 2MPT)
+

√
K

2
(M2(1 + 16kΛT (ηmin,2M)) + 4MPT)ΩT (C.15)

Finally, if η∗ ∈ [ηmin, ηmax∥ then there is an ηi ≙
2i

ϵLmax

√
T

for which ηi ≤ η
∗ ≤ ηi+1 ≙ 2ηi, so Equa-

tion (C.13) is gives us

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin,2M) + 3
√

K

2
(M2(1 + 16kΛT (ηmin,2M)) + 4MPT)ΩT

(C.16)

Finally, combining Equations (C.10), (C.12) and (C.14) to (C.16), we have

RT (u) ≤ 2kCS + 4kGmax [MΛT (ηmin,2M) + ϵΛT (τmin)√
T

]
+ 2M (Gmax +MLmax) log(M

√
T

ϵ
)

+KϵLmax (M + PT + 2k ϵΛT (τmin)√
T

)
+KLmax (M2(1 + 8kΛT (ηmin,2M)) + 2MPT)
+

¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2
+ 3

√
K

2
(M2(1 + 16kΛT (ηmin,2M)) + 4MPT)ΩT

164

Lastly, note that by Lemma C.1.4, we have

CS ≤ 2
√
TDmin (Gmax +

Dmin

ηmax

)
≙ 2ϵGmax +

2Kϵ2Lmax√
T

ΛT (τ) ≤ log(24η2maxD
4

η2minD
4
min

∧
6 ∣Sη ∣D2

D2
min

) + 1
≤ log(6 ∣Sη ∣D2

D2
min

) + 1

so we have the following bounds:

ΛT (ηmin,Dmin) ≤ log (6 log2 (⌈log2(√T)⌉ + 1)) ≤ O (log(log(√T)))
ΛT (ηmin,2M) ≤ log⎛⎝

24TM2 log2 (⌈log2(√T)⌉ + 1)
ϵ2

⎞⎠ ≤ O (log (M
√
T log (√T) /ϵ)) .

Overall, the dynamic regret is bounded as

RT (u) ≤ O⎛⎝Gmax(M + ϵ)Λ∗T
+Lmax(M + ϵ)2Λ∗T +Lmax(M + ϵ)PT
+

¿ÁÁÀ T

∑
t≙1

[ℓt(ut) − ℓ∗t ∥2
+

√(M2Λ∗T +MPT)ΩT)

where Λ∗T ≤ O (log(M
√
T log(√T)
ϵ

) + log (log (√T))) ≤ O (log(M√T log(√T)
ϵ

)).
Proof of Theorem 9.2.2

We focus on the case where G/L ≤ M , since otherwise when G/L ≥ M the loss function ℓt(w) ≙(1
2
G + 1

2
LM)ξtw for ξt ∈ {−1,1} satisőes ∣ℓ′t(w)∣ ≙ 1

2
(G + LM) ≤ G for any w ∈ W , so ℓt is G-

Lipschitz. Hence, existing lower bounds tell us that there exists a sequence ξt ∈ [−1,1∥ such that

RT (u) ≥ Ω(G√MPTT) ≥ Ω(12(G + LM)√MPTT) ≙ Ω(12G√MPTT +
1
2
LM3/2√PTT) where M ≙

maxt ∥ut∥ and PT ≙ ∑Tt≙2 ∥ut − ut−1∥ (L. Zhang, S. Lu, and Z.-H. Zhou 2018).

165

Theorem 9.2.2. For any M > 0 there is a sequence of (G,L)-quadratically bounded functions with
G
L
≤M such that for any γ ∈ [0, 1

2
∥,

RT (u) ≥ G
4
M1−γ [PTT ∥γ + L

8
M2−γ [PTT ∥γ .

where PT ≙ ∑Tt≙2 ∥ut − ut−1∥ and M ≥maxt ∥ut∥.
Proof. On each round t, we can always őnd a ut such that ut ⊥ wt. Let ∥ut∥ ∶≙ σ ≤M for some σ to

be decided. Let G > 0, L ≥ 0 such that G/L ≤ σ, let ξt ≙
ut∥ut∥ , and on each round set

ℓt(w) ≙ −1
2
G ⟨ξt,w⟩ + L

4
(σ − ⟨ξt,w⟩)2.

Observe that these losses are (G̃, L̃) quadratically bounded with G̃ ≙ 1
2
G + 1

2
σL and L̃ ≙ L, and

G̃/L̃ ≤ σ ≤M as required. Since wt ⊥ ξt and ⟨ξt, ut⟩ ≙ ∥ut∥ ≙ σ, we have

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut) ≥ 1

2
GσT +

L

4
Tσ2.

Note also that the path-length of this comparator sequence is bounded as

PT ≙
T

∑
t≙2

∥ut − ut−1∥ ≤ 2σT.
Now for µ ∈ [0,1/2∥ set σ ≙MT−µ, then the path-length is bounded as

PT ≤ 2MT 1−µ

and the regret is bounded below by

1

2
GMT 1−µ

+
L

4
T 1−2µM2.

Now set γ ≙ 1−2µ
2−µ
∈ [0, 1

2
∥ and consider the second term:

L

4
T 1−2µM2

≙
L

4
(MT 1−µ)γ(MT 1−µ)1−γT−µM

≥
L

4 ⋅ 2γ
(PT)γ(MT 1−µ)1−γT−µM

≙
L

8
M2−γP

γ
T T
(1−µ)(1−γ)−µ

≙
L

8
M2−γ [PTT ∥γ

166

where the last line observes γ ≙ 1−2µ
2−µ
∈ [0, 1

2
∥, so that (1 − µ)(1 − γ) − µ ≙ γ. Similarly,

1

2
GMT 1−µ

≙
1

2
G(MT 1−µ)γ(MT 1−µ)1−γ ≥ 1

2 ⋅ 2γ
GM1−γ(PT)γT (1−µ)(1−γ)

≥
1

4
GM1−γ(PTT)γ ,

so we have

RT (u) ≥ G
4
M1−γ [PTT ∥γ + L

8
M2−γ [PTT ∥γ .

C.2 Details for Chapter 10

C.2.1 Proofs for Section 10.2 (Dynamic Regret via Discounting)

Equivalence to FTRL and Mirror Descent

We accomplish our analysis of the discounted VAW forecaster using the equivalence in the following

proposition, proving both optimistic FTRL and and optimistic mirror descent interpretations of

the discounted VAW forecaster. Equation (C.18) is perhaps the most natural interpretation of the

update: it says that the discounted VAW forecaster chooses the w which minimizes the discounted

sum ht(w)+γℓt−1(w)+γ2ℓt−2(w)+ . . ., thus placing greater emphasis on the most-recent losses and

the hint function ht(w). However, it is not at all obvious how to analyze the dynamic regret of

the discounted VAW forecaster when interpreted in this FTRL-like form. Rather, the key to our

results in this work is to instead approach the analysis through the lens of the mirror descent update

(Equation (C.19)). Interestingly, a similar mirror descent interpretation was used in the seminal

work of Azoury and Manfred K Warmuth (2001), though they did not account for an arbitrary ỹt

and they did not refer to the algorithm in terms of mirror descent.

Proposition C.2.1. (Discounted VAW Forecaster) Let γ ∈ (0,1∥, λ > 0, ỹ1 ≙ 0, and ỹt ∈ R for t > 1.

Deőne ht(w) ≙ 1
2
(ỹt − ⟨xt,w⟩)2 and ℓ0(w) ≙ λ

2
∥w∥22. Recursively deőne Σt ≙ xtx

⊺

t + γΣt−1 starting

from Σ0 ≙ λI, let ψt(w) ≙ 1
2
∥w∥2Σt and set w1 ≙ argminw∈Rd ψ1(w) ≙ 0. Then the following are

equivalent

Σ−1t [ỹtxt + γ t−1∑
s≙1

γt−1−sysxs] (C.17)

argminw∈Rdht(w) + γ t−1∑
s≙0

γt−1−sℓs(s) (C.18)

argminw∈Rd(γℓt−1 − γht−1 + ht)(w) + γDψt−1(w∣wt−1) (C.19)

167

Remark C.2.2. Note that with γ ≙ 0, Equations (C.18) and (C.19) prescribe choosing any wt

satisfying ⟨wt, xt⟩ ≙ ỹt. The choice is not unique, but nevertheless it will often be convenient to refer

to an algorithm which greedily predicts ỹt on each round as an instance of Algorithm 12 with γ ≙ 0.

Proof. The result follows by showing that Equations (C.18) and (C.19) are both equivalent to

Equation (C.17). First consider the former, Equation (C.18). From the őrst-order optimality

condition we have

0 ≙ ∇ht(wt) + γ t−1∑
s≙0

γt−1−s∇ℓs(wt)
≙ −(ỹt − ⟨xt,wt⟩)xt − γ t−1∑

s≙1

γt−1−s(ys − ⟨xs,wt⟩)xs + γtλwt,
where the last line recalls that we deőned ℓ0(w) ≙ λ

2
∥w∥22. Hence,

(γtλI + t

∑
s≙1

γt−sxsx
⊺

s)wt ≙ ỹtxt + t

∑
s≙1

γt−sysxs

Ô⇒ wt ≙ (γtλI + t

∑
s≙1

γt−sxsx
⊺

s)
−1 [ỹtxt + γ t−1∑

s≙1

γt−1−sysxs]
≙ Σ−1t [ỹtxt + γ t−1∑

s≙1

γt−1−sysxs] ,
where the last line can be seen by unrolling the recursion for Σt.

Likewise, consider Equation (C.19). From the őrst-order optimality condition wt ≙ argminw∈Rd(γℓt−1−
γht−1 + ht)(w) + γDψt−1(w∣wt), we have

0 ≙ γ(∇ℓt−1(wt) −∇ht−1(wt)) +∇ht(wt) + γ [∇ψt−1(wt) −∇ψt−1(wt−1)∥
≙ −γyt−1xt−1 + γỹt−1xt−1 − ỹtxt + xtx

⊺

twt + γΣt−1wt − γΣt−1wt−1

≙ −γyt−1xt−1 + γỹt−1xt−1 − ỹtxt +Σtwt − γΣt−1wt−1,

where the last line observes that Σt ≙ xtx
⊺

t + γΣt−1 by construction. Hence, re-arranging we have

Σtwt ≙ ỹtxt + γyt−1xt−1 − γỹt−1xt−1 + γΣt−1wt−1

168

and unrolling the recursion:

≙ ỹtxt + γyt−1xt−1 − γỹt−1xt−1 + γ [ỹt−1xt−1 + γyt−2xt−2 − γỹt−2xt + γΣt−2wt−2∥
≙ ỹtxt + γyt−1xt−1 + γ

2yt−2xt−2 − γ
2ỹt−2xt−2 + γ

2Σt−2wt−2

≙ . . .

≙ ỹtxt − γ
t−1ỹ1x1 + γ

t−1

∑
s≙1

γt−1−sysxs

≙ ỹtxt + γ
t−1

∑
s≙1

γt−1−sysxs,

for ỹ1 ≙ 0. Hence, applying Σ−1t to both sides we have

wt ≙ Σ
−1
t [ỹtxt + γ t−1∑

s≙1

γt−1−sysxs]

Proof of Theorem 10.2.1

Theorem 10.2.1. Let λ > 0 and γ ∈ (0,1∥. Then for any sequence u ≙ (u1, . . . , uT) in R
d, Algo-

rithm 12 guarantees

RT (u) ≤ γλ
2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + d2 log (1/γ) T∑
t≙1

(yt − ỹt)2
where F γt (w) ≙ γt λ2 ∥w∥22 +∑ts≙1 γt−sℓs(w).
Proof. Begin by applying the regret template provided by Lemma C.2.3:

RT (u) ≤ T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1) + T

∑
t≙1

ht+1(ut) − ht(ut) + 1

2

T

∑
t≙1

(yt − ỹt)2 ∥xt∥2Σ−1t ,

bound the őrst two summations using Lemma C.2.4:

≤
γλ

2
∥u1∥22 + hT+1(uT) + γ T−1∑

t≙1

[F γt (ut+1) − F γt (ut)∥ + 1

2

T

∑
t≙1

(yt − ỹt)2 ∥xt∥2Σ−1t ,

169

and apply a discounted variant of the log-determinant lemma (Lemma C.2.15) to bound the őnal

summation:

≤
γλ

2
∥u1∥22 + hT+1(uT) + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + d2 log (1/γ) T∑
t≙1

(yt − ỹt)2
Finally, since the regret does not depend on hT+1(⋅) we may set hT+1(⋅) ≡ 0 in the analysis and hide

constants to arrive at the stated bound.

Proof of Lemma C.2.3

The following lemma provides the base regret decomposition that we use as a jumping-off point to

prove Theorem 10.2.1. The result follows using mostly standard mirror descent analysis, though

with a bit of additional care to handle issues related to the discounted regularizer.

Lemma C.2.3. Let γ ∈ (0,1∥. Then for any sequence u ≙ (u1, . . . , uT) in R
d, Algorithm 12 guar-

antees

RT (u) ≤ T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1)
+

T

∑
t≙1

ht+1(ut) − ht(ut)
+

T

∑
t≙1

1

2
(yt − ỹt)2 ∥xt∥2Σ−1t

Proof. We will proceed following a mirror-descent-based analysis, and thus begin by exposing the

terms (γℓt − γht + ht+1)(wt+1) observed in the mirror-descent interpretation of the update (Equa-

170

tion (C.19)):

RT (u) ≙ T

∑
t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

γ [ℓt(wt) − ℓt(ut)∥ + (1 − γ) T∑
t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

γ [(ℓt − ht)(wt) − (ℓt − ht)(ut)∥ + T

∑
t≙1

γht(wt) − γht(ut)
+ (1 − γ) T∑

t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

γ [(ℓt − ht)(wt+1) − (ℓt − ht)(ut)∥ + T

∑
t≙1

γht(wt) − γht(ut)
+ γ

T

∑
t≙1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − γ) T∑

t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

(γℓt − γht + ht+1)(wt+1) − (γℓt − γht + ht+1)(ut)
+

T

∑
t≙1

γht(wt) − ht+1(wt+1) + T

∑
t≙1

ht+1(ut) − γht(ut)
+ γ

T

∑
t≙1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − γ) T∑

t≙1

ℓt(wt) − ℓt(ut)

171

Re-arranging factors of γ from the second-line and observing that ∑Tt≙1 ht(wt)−ht+1(wt+1) ≙ h1(w1)−
hT+1(wT+1):

≙

T

∑
t≙1

(γℓt − γht + ht+1)(wt+1) − (γℓt − γht + ht+1)(ut)
+

T

∑
t≙1

ht(wt) − ht+1(wt+1) + T

∑
t≙1

−(1 − γ)ht(wt) + (1 − γ)ht(ut) + T

∑
t≙1

ht+1(ut) − ht(ut)
+ γ

T

∑
t≙1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − γ) T∑

t≙1

ℓt(wt) − ℓt(ut)
≙

T

∑
t≙1

(γℓt − γht + ht+1)(wt+1) − (γℓt − γht + ht+1)(ut)
+ h1(w1) − hT+1(wT+1) + T

∑
t≙1

ht+1(ut) − ht(ut)
+ γ

T

∑
t≙1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1)
+ (1 − γ) T∑

t≙1

(ℓt − ht)(wt) − (ℓt − ht)(ut) (C.20)

Moreover, from the őrst-order optimality condition wt+1 ≙ argminw∈Rd(γℓt − γht + ht+1)(w) +
γDψt(w∣wt), we have

⟨∇(γℓt − γht + ht+1)(wt+1) + γ∇ψt(wt+1) − γ∇ψt(wt),wt+1 − ut⟩ ≤ 0
so re-arranging:

⟨∇(γℓt − γht + ht+1)(wt+1),wt+1 − ut⟩ ≤ γ ⟨∇ψt(wt) −∇ψt(wt+1),wt+1 − ut⟩
≙ γDψt(ut∣wt) − γDψt(ut∣wt+1) − γDψt(wt+1∣wt),

where the last line uses the three-point relation for bregman divergences, ⟨∇f(w) −∇f(w′),w′ − u⟩ ≙

172

Df(u∣w) −Df(u∣w′) −Df(w′∣w). Thus,

T

∑
t≙1

(γℓt − γht + ht+1)(wt+1) − (γℓt − γht + ht+1)(ut)
(a)
≙

T

∑
t≙1

⟨∇(γℓt − γht + ht+1)(wt+1),wt+1 − ut⟩ −Dγℓt−γht+ht+1(ut∣wt+1)
≤

T

∑
t≙1

γDψt(ut∣wt) − γDψt(ut∣wt+1) − γDψt(wt+1∣wt) −Dγℓt−γht+ht+1(ut∣wt+1)
(b)
≙

T

∑
t≙1

γDψt(ut∣wt) − γDψt(ut∣wt+1) −Dht+1(ut∣wt+1) − γDψt(wt+1∣wt)
(c)
≙

T

∑
t≙1

γDψt(ut∣wt) −Dψt+1(ut∣wt+1) − γDψt(wt+1∣wt)
≙

T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1) − (1 − γ)Dψt(ut∣wt) − γDψt(wt+1∣wt),
where (a) uses the deőnition of Bregman divergence to re-write f(w) − f(u) ≙ ⟨∇f(w),w − u⟩ −
Df(u∣w), (b) observes that γ(ℓt − ht)(w) ≙ γ (12y2t − 1

2
ỹ2t + (ỹt − yt) ⟨xt,w⟩), so Dγℓt−γht+ht+1(⋅∣⋅) ≙

Dht+1(⋅∣⋅) due to the invariance of Bregman divergences to linear terms, and (c) recalls that Σt+1 ≙

xt+1x
⊺

t+1 + γΣt so that overall we have:

γDψt(ut∣wt+1) +Dht+1(ut∣wt+1) ≙ γ2 ∥ut −wt+1∥2Σt + 1

2
⟨xt+1, ut −wt+1⟩2

≙
1

2
∥ut −wt+1∥2Σt+1

≙Dψt+1(ut∣wt+1).
Plugging this back into Equation (C.20), we have

RT (u) ≤ T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1)
+ h1(w1) − hT+1(wT+1) + T

∑
t≙1

ht+1(ut) − ht(ut)
+ γ

T

∑
t≙1

(ℓt − ht)(wt) − (ℓt − ht)(wt+1) −Dψt(wt+1∣wt)
+ (1 − γ) T∑

t≙1

(ℓt − ht)(wt) − (ℓt − ht)(ut) −Dψt(ut∣wt+1).
Finally, observe that for any u, v ∈ Rd, (ℓt−ht)(u)−(ℓt−ht)(v) ≙ (ỹt−yt) ⟨xt, u − v⟩, so an application

173

of Fenchel-Young inequality yields

(ℓt − ht)(u) − (ℓt − ht)(v) −Dψt(v∣u) ≙ (ỹt − yt) ⟨xt, u − v⟩ − 1

2
∥u − v∥2Σt

≤
1

2
(yt − ỹt)2 ∥xt∥2Σ−1t .

Applying this in the last two lines of the previous display yields

RT (u) ≤ T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1)
h1(w1) − hT+1(wT+1)´¹¹¹¸¹¹¹¶

≤0

+

T

∑
t≙1

ht+1(ut) − ht(ut)

γ
T

∑
t≙1

1

2
(yt − ỹt)2 ∥xt∥2Σ−1t + (1 − γ)

T

∑
t≙1

1

2
(yt − ỹt)2 ∥xt∥2Σ−1t

≤

T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1)
+

T

∑
t≙1

ht+1(ut) − ht(ut)
+

T

∑
t≙1

1

2
(yt − ỹt)2 ∥xt∥2Σ−1t

Proof of Lemma C.2.4

The following lemma bounds the sum of divergence terms. Intuitively, the goal here is to remove all

instances of wt from the analysis, since in an unbounded domain any terms depending on wt will

be hard to quantify and could be arbitrarily large in general. Lemma C.2.4 shows how get rid of

the wt-dependent terms left in the bound from Lemma C.2.3, such that only dependencies on the

comparators ut remain.

Lemma C.2.4. Under the same conditions as Lemma C.2.3,

T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1) + T

∑
t≙1

ht+1(ut) − ht(ut) ≤ γλ
2
∥u1∥22 + hT+1(uT) + γ T−1∑

t≙1

F
γ
t (ut+1) − F γt (ut).

where F γt (w) ≙ ∑ts≙0 γt−sℓs(w).
Proof. Observe that by Lemma C.2.14 we have Dℓt(u∣v) ≙ 1

2
⟨xt, u − v⟩2 ≙Dht(u∣v) for any u, v ∈W .

Hence, letting F
γ
t (w) ≙ ∑ts≙0 γt−sℓs(w) and F̂

γ

t (w) ≙ ht(w) + γF γt−1(w), and recalling ψt(w) ≙
174

1
2
∥w∥2Σt ≙ γtλ

2
∥w∥22 + 1

2 ∑ts≙1 γt−s ⟨xs,w⟩2, we have Dψt(u∣v) ≙DF̂
γ

t
(u∣v) for any u, v ∈∈ Rd. Thus:

T

∑
t≙1

Dψt(ut∣wt) −Dψt+1(ut∣wt+1)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙2

Dψt(ut∣wt) −Dψt(ut−1∣wt)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙2

D
F̂
γ

t
(ut∣wt) −DF̂

γ

t
(ut−1∣wt)

≙Dψ1
(u1∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙2

F̂
γ

t (ut) − F̂ γt (ut−1) − ⟨∇F̂ γt (wt), ut − ut−1⟩ .
Moreover, by Proposition C.2.1 we have

wt ≙ argminw∈Rd ht(w) + γ t−1∑
s≙0

γt−1−sℓs(w) ≙ argminw∈Rd F̂
γ

t (w),
hence by convexity of F̂

γ

t and the őrst-order optimality condition we have ∇F̂
γ

t (wt) ≙ 0, so overall

we have

T

∑
t≙1

Dψt(ut∣wt) −Dψt(ut∣wt+1) + T

∑
t≙1

ht+1(ut) − ht(ut)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙2

F̂
γ

t (ut) − F̂ γt (ut−1) + T

∑
t≙1

ht+1(ut) − ht(ut)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + T

∑
t≙2

[ht(ut) − ht(ut−1) + γF γt−1(ut) − γF γt−1(ut−1)] + T

∑
t≙1

ht+1(ut) − ht(ut)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + γ T−1∑
t≙1

F
γ
t (ut+1) − F γt (ut) + T

∑
t≙2

ht+1(ut) − ht(ut−1) + h2(u1) − h1(u1)
≙Dψ1

(u1∣w1) −DψT+1(uT ∣wT+1) + hT+1(uT) − h1(u1) + γ T−1∑
t≙1

F
γ
t (ut+1) − F γt (ut).

Finally, observe that with w1 ≙ 0 and ỹ1 ≙ 0 we have

Dψ1
(u1∣w1) ≙ ψ1(u1) − ψ1(0) − ⟨∇ψ1(0), u1⟩ ≙ h1(u1) + γℓ0(u1) ≙ h1(u1) + γλ

2
∥u1∥22

so we can express the bound as the bound as

T

∑
t≙1

Dψt(ut∣wt) −Dψt(ut∣wt+1) + T

∑
t≙1

ht+1(ut) − ht(ut)
≤
γλ

2
∥u1∥22 + hT+1(uT) + γ T−1∑

t≙1

F
γ
t (ut+1) − F γt (ut).

175

Proof of Lemma 10.2.2

The following lemma bounds the variability and stability terms from Theorem 10.2.1 to expose a

more explicit trade-off in terms of the discount factor γ.

Lemma 10.2.2. Let ℓ0, ℓ1, . . . , ℓT be arbitrary non-negative functions, 0 < γ ≤ β < 1, and F γt (w) ≙
∑ts≙0 γt−sℓs(w). For all t, deőne

d̄
β
t (u, v) ≙ 1

∑ts≙0 βt−s
t

∑
s≙0

βt−s [ℓs(u) − ℓs(v)∥+
and let P βT (u) ≙ ∑T−1t≙1 d̄

β
t (ut+1, ut). Then for any VT ≥ 0,

γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + log (1γ)VT ≤ β

1 − β
P
β
T (u) + 1 − γ

γ
VT

Proof. The őrst summation can be bounded as

γ
T−1

∑
t≙1

[F γt (ut) − F γt (ut−1)∥ ≙ γ T−1∑
t≙1

t

∑
s≙0

γt−s [ℓs(ut+1) − ℓs(ut)∥
≤ γ

T−1

∑
t≙1

t

∑
s≙0

γt−s [ℓs(ut+1) − ℓs(ut)∥+
≤ β

T−1

∑
t≙1

t

∑
s≙0

∑ts′≙0 βt−s′
∑ts′≙0 βt−s′

βt−s [ℓs(ut+1) − ℓs(ut)∥+
≤

β

1 − β

T−1

∑
t≙1

t

∑
s≙0

βt−s

∑ts′≙0 βt−s′
[ℓs(ut+1) − ℓs(ut)∥+

≙
β

1 − β
P
β
T (u),

where the last inequality uses ∑ts≙0 βt−s ≙ 1−βt+1

1−β
≤

1
1−β

. Using this along with the elementary

inequality log (x) ≤ x − 1, for any VT ≥ 0 we have

γ
T−1

∑
t≙1

[F γt (ut) − F γt (ut−1)∥ + log (1γ)VT ≤ β

1 − β
P
β
T (u) + (1γ − 1)VT

≙
β

1 − β
P
β
T (u) + 1 − γ

γ
VT

176

Existence of a Good Discount Factor

The following lemma establishes the existence of a discount factor that will lead to favorable tuning

of the γ-dependent terms in Lemma 10.2.2.

Lemma C.2.5. Let ℓ0, ℓ1, . . . be arbitrary non-negative functions, VT ≥ 0, and denote d̄
γ
t (u, v) ≙

∑
t
s≙0 γ

t−s[ℓs(u)−ℓs(v)∥+
∑
t
s≙0 γ

t−s for γ ∈ [0,1∥, and P γT (u) ≙ ∑T−1t≙1 d̄
γ
t (ut+1, ut). Then there is a γ∗ ∈ [0,1∥ such

that

γ∗ ≙

√
VT√

VT +
√
P
γ∗

T (u) .
Proof. First, notice that that any such γ with the stated property must be in [0,1∥ since

0 ≤

√
VT√

VT +
√
P
γ
T (u) ≤

√
VT√
VT
≙ 1.

Next, observe that the condition can be equivalently expressed as follows:

γ ≙

√
VT√

VT +
√
P
γ
T (u)

⇐⇒

√
VT (1 − γ) ≙ γ√P γT (u)

≙ γ

¿ÁÁÀT−1

∑
t≙1

t

∑
s≙0

γt−s

∑ts≙0 γt−s
[ℓs(ut+1) − ℓs(ut)∥+

≙ γ

¿ÁÁÀT−1

∑
t≙1

t

∑
s≙0

γt−s

1 − γt+1
(1 − γ) [ℓs(ut+1) − ℓs(ut)∥+

⇐⇒

√
VT (1 − γ) ≙ γ

¿ÁÁÀT−1

∑
t≙1

t

∑
s≙0

γt−s

1 − γt+1
[ℓs(ut+1) − ℓs(ut)∥+.

The quantity on the LHS begins at
√
VT (for γ ≙ 0) and then decreases to 0 as a function of γ.

Likewise, the RHS begins at 0 (for γ ≙ 0) and increases as a function of γ, approaching ∞ as γ → 1.

Hence, there must be some γ ∈ [0,1∥ at which the two lines cross, and hence a γ ∈ [0,1∥ which

satisőes the above relation, so there is a γ ∈ [0,1∥ such that

γ ≙

√
VT√

VT +
√
P
γ
T (u) .

177

Proof of Theorem 10.2.3

Now combining everything we’ve seen in the previous sections, we can easily prove the following

bound for the discounted VAW forecaster under oracle tuning of the discount factor.

Theorem 10.2.3. For any sequences y1, . . . , yT and ỹ1, . . . , ỹT in R and any sequence u ≙ (u1, . . . , uT)
in R

d, there is a discount factor γ∗ ∈ [0,1∥ satisfying

γ∗ ≙

√
d
2 ∑Tt≙1(yt − ỹt)2√

d
2 ∑Tt≙1(yt − ỹt)2 +√P γ∗T (u)

(10.2)

with which the regret of Algorithm 12 is bounded above by

RT (u) ≤ O(dmax
t
(yt − ỹt)2 log (T) +

¿ÁÁÀdP
γ∗

T (u) T∑
t≙1

(yt − ỹt)2)
Proof. Lemma C.2.5 shows that for any sequence u ≙ (u1, . . . , uT), there is a γ∗ ∈ [0,1∥ such that

γ∗ ≙

√
d∑Tt≙1 1

2
(yt − ỹt)2√

d∑Tt≙1 1
2
(yt − ỹt)2 +√P γ∗T (u) ,

so choosing γ ≙ γ∗ and applying Theorem 10.2.1, we have

RT (u) ≤ γ∗λ
2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 ∥xt∥22

λd
)

+ γ∗
T−1

∑
t≙1

[F γ∗t (ut+1) − F γ∗t (ut)] + d2 log (1/γ∗) T∑
t≙1

(yt − ỹt)2
(∗)
≤
λ

2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 ∥xt∥22

λd
)

+
γ∗

1 − γ∗
P
γ∗

T (u) + 1 − γ∗

γ∗
d

2

T

∑
t≙1

(yt − ỹt)2

≙
λ

2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 ∥xt∥22

λd
) +
¿ÁÁÀ2dP

γ∗

T (u) T∑
t≙1

(yt − ỹt)2

where (∗) uses Lemma 10.2.2 (with β ≙ γ ≙ γ∗). The stated result follows by hiding lower-order

terms.

178

C.2.2 Proofs for Section 10.2.1 (Small-loss Bounds via Self-conődent Predic-

tions)

Proof of Theorem 10.2.4

We split the proof of Theorem 10.2.4 into two parts. The following lemma, proven in Appendix C.2.2,

őrst derives an initial regret template that does most of the heavy lifting. We will later re-use this

template in the proof of Theorem 10.3.3 to avoid repeating the argument. The high-level intuition is

that choosing hints ỹt ≈ ⟨xt,wt⟩ leads to ∑Tt≙1(yt − ỹt)2 ≈ ∑Tt≙1 ℓt(wt), which leads to a self-bounding

argument that lets us replace ∑Tt≙1(yt − ỹt)2 with ∑Tt≙1 ℓt(ut) in the regret bound. We defer proof of

the lemma to the next subsection, Appendix C.2.2.

Lemma C.2.6. Let yRef
t ∈ R be an arbitrary reference point, available at the start of round t,

and let Bt ≙ {y ∈ R ∶ yRef
t −Mt ≤ y ≤ y

Ref
t +Mt} for Mt ≙ maxs<t ∣ys − yRef

s ∣. Suppose that we apply

Algorithm 12 with hints ỹt ≙ yt ∶≙ ClipBt(⟨xt,wt⟩). Then for any sequence u ≙ (u1, . . . , uT) in R
d

and any γ, β ∈ [0,1∥ such that β ≥ γ ≥ γmin ≙
2d

2d+1
,

RT (u) ≤ γλ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 2
β

1 − β
P
β
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut)
Now using this template, Theorem 10.2.4 is easily proven by plugging in the stated discount

factor γ ≙ γ○ ∨ γmin

Theorem 10.2.4. Let yRef
t ∈ R be an arbitrary reference point and let Bt ≙ [yRef

t −Mt, y
Ref
t +Mt∥ for

Mt ≙ maxs<t ∣ys − yRef
s ∣. Suppose that we apply Algorithm 12 with hints ỹt ≙ ClipBt(⟨xt,wt⟩). Then

for any sequence of losses ℓ1, . . . , ℓT and any sequence u ≙ (u1, . . . , uT) in R
d, there is a γ○ ∈ [0,1∥

satisfying

γ○ ≙

√
d∑Tt≙1 ℓt(ut)√

d∑Tt≙1 ℓt(ut) +√P γ○T (u) . (10.3)

Moreover, running Algorithm 12 with discount γ○ ∨ γmin for γmin ≙
2d

2d+1
ensures

RT (u) ≤ O(dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) +
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)),

179

Proof. By Lemma C.2.6 (with β ≙ γ), for any γ ≥ γmin ≙
2d

2d+1
, we have

RT (u) ≤ γλ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 2
γ

1 − γ
P
γ
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut).

Now by Lemma C.2.5, there is a γ○ ∈ [0,1∥ satisfying γ○ ≙

√
d∑

T
t≙1 ℓt(ut)√

d∑
T
t≙1 ℓt(ut)+

√
P
γ○

T
(u) . If γ○ ≥ γmin, then

for γ ≙ γ○ ∨ γmin, the terms in the second line reduce to

2
γ○

1 − γ○
P
γ○

T (u) + 1 − γ○

γ○
2d

T

∑
t≙1

ℓt(ut) ≙ 4
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut),
and otherwise for γ○ ≤ γmin we have

2
γmin

1 − γmin

P
γmin

T (u) + 1 − γmin

γmin

2d
T

∑
t≙1

ℓt(ut) ≤ 2 γmin

1 − γmin

P
γmin

T (u) + 1 − γ○

γ○
2d

T

∑
t≙1

ℓt(ut)
≤ 4dP

γmin

T (u) + 2
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut),
so combining these two bounds and plugging back into the regret bound above, we have

RT (u) ≤ γλ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 4dP
γmin

T (u) + 4
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)
≤ O
⎛⎜⎝dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) +
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut).⎞⎟⎠

180

Proof of Lemma C.2.6

Lemma C.2.6. Let yRef
t ∈ R be an arbitrary reference point, available at the start of round t,

and let Bt ≙ {y ∈ R ∶ yRef
t −Mt ≤ y ≤ y

Ref
t +Mt} for Mt ≙ maxs<t ∣ys − yRef

s ∣. Suppose that we apply

Algorithm 12 with hints ỹt ≙ yt ∶≙ ClipBt(⟨xt,wt⟩). Then for any sequence u ≙ (u1, . . . , uT) in R
d

and any γ, β ∈ [0,1∥ such that β ≥ γ ≥ γmin ≙
2d

2d+1
,

RT (u) ≤ γλ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 2
β

1 − β
P
β
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut)
Proof. Applying Theorem 10.2.1 followed by Lemma 10.2.2, for any γ ∈ (0,1∥ and β ≥ γ we have

R
Aγ
T (u) ≤ γλ2 ∥u1∥22 + d2 max

t
(yt − yt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + d2 log (1/γ) T∑
t≙1

(yt − yt)2
≤
γλ

2
∥u1∥22 + d2 max

t
(yt − yt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+
β

1 − β
P
β
T (u) + 1 − γ

γ

d

2

T

∑
t≙1

(yt − yt)2,
Using Lemma C.2.7 we have

T

∑
t≙1

(yt − yt)2 ≤ T

∑
t≙1

[M2
t+1 −M

2
t + 2ℓt(wt)] ≤M2

T+1 + 2
T

∑
t≙1

ℓt(wt),
so for any γ ≥ 2d

2d+1
, we have

1 − γ

γ

d

2

T

∑
t≙1

(yt − yt)2 ≤ 1 − γ

γ
d [1

2
M2
T+1 +

T

∑
t≙1

ℓt(wt)]
≙
1 − γ

γ
d [1

2
M2
T+1 +

T

∑
t≙1

ℓt(wt) − ℓt(ut) + T

∑
t≙1

ℓt(ut)]
≤
1

4
M2
T+1 +

1

2

T

∑
t≙1

ℓt(wt) − ℓt(ut) + 1 − γ

γ
d
T

∑
t≙1

ℓt(ut),
where the őnal inequality uses γ ≥ 2d

2d+1
Ô⇒

1−γ
γ
≤

1
2d

and bounds 1−γ
γ
d∑Tt≙1 ℓt(wt) − ℓt(ut) ≤

1
2 ∑Tt≙1 ℓt(wt) − ℓt(ut) (assuming ∑Tt≙1 ℓt(wt) − ℓt(ut) ≥ 0, which can be assumed without loss of

generality since otherwise the stated bound trivially holds). Plugging this back into the regret

181

bound and re-arranging terms, we have

RT (u) ≤ γλ
2
∥u1∥22 + d2 max

t
(yt − yt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+
γ

1 − γ
P
γ
T (u) + 1

2
RT (u) + 1 − γ

γ

T

∑
t≙1

ℓt(ut)
Ô⇒ RT (u) ≤ γλ ∥u1∥22 + 4dmax

t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 2
β

1 − β
P
β
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut),
where we’ve bounded maxt(yt − yt)2 ≤ 4MT+1 ≙ 4maxt(yt − yRef

t)2 using Lemma C.2.7.

C.2.3 Proofs for Section 10.2.2 (Dimension-dependent Lower Bound)

Proof of Theorem 10.2.5

Theorem 10.2.5. For any d, T ≥ 1 and P,Y > 0 such that dP ≤ 2TY 2, there is a sequence of losses

ℓt(w) ≙ 1
2
(yt − ⟨xt,w⟩)2 and a comparator sequence u ≙ (u1, . . . , uT) satisfying maxt ∣yt∣ ≤ Y and

∑T−1t≙1 maxs [ℓs(ut+1) − ℓs(ut)∥+ ≤ P such that

RT (u) ≥ Ω⎛⎜⎝dY 2 log (T) + dP +
¿ÁÁÀdP

T

∑
t≙2

(yt − yt−1)2⎞⎟⎠ .

Proof. First notice that the trivial comparator sequence with u1 ≙ . . . ≙ uT always satisőes

T

∑
t≙2

max
s
[ℓs(ut+1) − ℓs(ut)∥+ ≙ 0 ≤ P,

so we can always lower-bound the dynamic regret using the well-known lower bound for the static

regret in this setting (see, e.g., Vovk (2001), Gaillard et al. (2019), and Mayo, Hadiji, and Erven

(2022)). In particular, for any u ∈W we have

sup
y1,...,yT

RT (u) ≥ Ω (dY 2 log (T)) (C.21)

Next, let σ ∈ [0,1∥ and let σ1, . . . , σt be a sequence of iid random variables drawn uniformly from{−σ,σ}, and let yt ≙ Y σt. Choose feature vectors xt which cycle through the standard basis vectors

(e.g. deőne ι(t) ≙ t (mod d) + 1 and let xt ≙ eι(t)). Now observe that the comparator sequence can

always exactly őt a sequence y1, . . . , yT by setting ut to satisfy ⟨xt, ut⟩ ≙ ut,ι(t) ≙ yt. In particular,

182

by letting ũ1 ≙ (y1, . . . , yd), ũ2 ≙ (yd+1, . . . , y2d), . . . , ũ⌈T /d⌉ ≙ (y⌈T /d⌉+1, . . . , yT ,0,0, . . .) we can set

ut ≙ ũ⌈t/d⌉ to guarantee ⟨xt, ut⟩ ≙ yt on all rounds, while only changing the comparator ⌈T /d⌉ times

at most. From this, we have the following initial bound on the regret:

sup
y1,...,yT

RT (u) ≥ Ey [T∑
t≙1

ℓt(wt) − ℓt(ut)]
≥ Ey [1

2
y2t +

1

2
⟨xt,wt⟩2 + yt ⟨xt,wt⟩]

≥
1

2
σ2Y 2T, (C.22)

where the last line uses y2t ≙ Y
2σ2 and E [yt∥ ≙ 0. Moreover, since the comparator changes only

every d rounds, the variability is bounded as

T−1

∑
t≙1

max
s
[ℓs(ut+1) − ℓs(ut)∥+ ≤ ⌈T /d⌉−1∑

i≙1

max
s
[ℓs(ũi+1) − ℓs(ũi)∥+ .

Observe that ℓs(ũi+1) − ℓs(ũi) can only be positive when ⟨xs, ũi⟩ ≙ ys and ⟨xs, ũi+1⟩ ≙ −ys, hence

T−1

∑
t≙1

max
s
[ℓs(ut+1) − ℓs(ut)∥+ ≤ ⌈T /d⌉−1∑

i≙1

max
s
[ℓs(ũi+1) − ℓs(ũi)∥+

≤

⌈T /d⌉−1
∑
i≙1

1

2
(ys − (−ys))2

≤
2TY 2

d
σ2.

Hence, setting σ ≙
√

dP
2TY 2 ≤ 1 ensures ∑T−1t≙1 maxs [ℓs(ut+1) − ℓs(ut)∥+ ≤ 2TY 2

d
σ2 ≤ P , and the regret

is bounded below by

sup
y1,...,yT

RT (u) ≥ 1

2
σ2Y 2T ≙

1

4
dP,

which we can further lower bound as:

≙
1

4

√
dP ⋅ dP ≥

1

4

¿ÁÁÀdP ⋅ d
T−1

∑
t≙1

max
s
[ℓs(ut+1) − ℓs(ut)∥+

≥
1

4

¿ÁÁÀdP
T−1

∑
t≙1

[ℓt(ut+1) − ℓt(ut)∥+ ≙ Ω⎛⎜⎝
¿ÁÁÀdP

T

∑
t≙2

1

2
(yt − yt−1)2⎞⎟⎠ . (C.23)

183

Taken together with Equation (C.21), we have

RT (u) ≥ Ω (dY 2 log (T) ∨√dPVT)
where VT ≙ dP ∨∑Tt≙2 1

2
(yt − yt−1)2.

C.2.4 Proofs for Section 10.3 (Learning the Optimal Discount Factor)

Proof of Lemma C.2.7

The following lemma shows that by clipping our predictions to some crude “trust-regionž, the loss

of the clipped prediction is at worst prortional to the maximal deviation of the true yt from the

trust region. Intuitively, we can think of yRef as being some data-dependent but already-observed

quantity, such as yt−1.

Lemma C.2.7. Deőne Mt ≙ maxs<t ∣ys − yRef
s ∣, Bt ≙ {x ∈ R ∶ yRef

t −Mt ≤ x ≤ y
Ref
t +Mt}, and let

yt ≙ ClipBt(⟨xt,wt⟩) for some wt ∈ R
d. Then for any t we have

(yt − yt)2 ≤min{4M2
t+1,2ℓt(wt) +M2

t+1 −M
2
t }

Proof. First, observe that we always have

(yt − yt)2 ≙ (yt − yRef
t + yRef

t − yt)2 ≤ 2 (yt − yRef
t)2 + 2 (yRef

t − yt)2 ≤ 2M2
t+1 + 2M

2
t ≤ 4M

2
t+1.

Next, observe that if ⟨xt,wt⟩ ≙ yt, then we trivially have (yt − yt)2 ≙ (yt − ⟨xt,wt⟩)2 ≙ 2ℓt(wt).
Otherwise, when ⟨xt,wt⟩ ≠ yt, we have clipped yt to be a distance of Mt away from yRef

t and

there are two cases to consider. If Sgn (yt − yRef
t) ≠ Sgn (yt − yRef

t), then the clipping operation

yt ≙ ClipBt(⟨xt,wt⟩) moves us closer to yt, hence ∣yt − yt∣ ≤ ∣yt − ⟨xt,wt⟩∣. If Sgn (yt − yRef
t) ≙

Sgn (yt − yRef
t), then we precisely have ∣yt − yt∣ ≙Mt+1 −Mt when yt ∉ Bt and ∣yt − yt∣ ≤ ∣yt − ⟨xt,wt⟩∣

when yt ∈ Bt. Hence, combining these cases we have

(yt − yt)2 ≤ (yt − ⟨wt, xt⟩)2 + (Mt+1 −Mt)2 ≤ 2ℓt(wt) +M2
t+1 −M

2
t ,

where we have used (u − l)2 ≤ u2 − l2 for u ≥ l ≥ 0. Hence, combining with the őrst display we have

(yt − yt)2 ≤min{4M2
t+1,M

2
t+1 −M

2
t + 2ℓt(wt)} .

184

Proof of Lemma C.2.8

The following lemma shows the following important property of the meta-learner’s losses: they are

αt-exp-concave with αt ≙
1

2maxi ℓt(y(i)t) in the domain Ŷ t ≙ {y ≙ ∑Ni≙1 piy(i)t ∶ ∑Ni≙1 pi ≙ 1}.
Lemma C.2.8. Let y(1), . . . , y(N) be arbitrary real numbers and let Ŷ ≙ {y ≙ ∑Ni≙1 piy(i) ∶ p ∈∆N}.
Then ℓt(y) ≙ 1

2
(yt − y)2 is αt-Exp-Concave on Ŷ for αt ≤

1

2maxi ℓt(y(i)) .

Proof. Letting ft(y) ≙ exp (−αtℓt(y)) we have for any y ∈ Ŷ :

f ′t(y) ≙ [exp(−αt
2
(yt − y)2)]′ ≙ exp(−αt

2
(yt − y)2)αt(yt − y)

f ′′t (y) ≙ exp(−αt
2
(yt − y)2) [α2

t (yt − y)2 − αt]
≙ exp(−αt

2
(yt − y)2) [2α2

t ℓt(y) − αt]
Hence for αt ≤

1

2maxi ℓt(y(i)) we have

f ′′t (y) ≤ exp(−αt
2
(yt − y)2)αt [2αtℓt(y) − 1∥ ≤ 0

so ft(y) ≙ exp (−αtℓt(y)) is concave and ℓt is αt-Exp-Concave over Ŷ for αt ≤
1

2maxi ℓt(y(i)) .

Regret of the Range-Clipped Meta-Algorithm

In this section we prove a simple result showing that the range-clipping reduction described by

Algorithm 13 incurs only an constant additional penalty. This lemma will be used to do most of

the heavy-lifting in proving Theorem 10.3.1, which simply applies the following lemma and then

chooses a speciőc meta-algorithm for AMeta.

Lemma C.2.9. For any [a, b∥ ⊆ [1, T ∥, sequence u ≙ (ua, . . . , ub) in R, and j ∈ [N∥, Algorithm 13

guarantees

R[a,b∥(u) ≤ 1

2
max
t
(yt − yRef

t)2 +RAj[a,b∥(u) +RMeta[a,b∥ (ej),
where R

Aj[a,b∥(u) ≙ ∑bt≙a ℓt(w(j)t) − ℓt(ut) is the dynamic regret Aj and RMeta[a,b∥ (ej) ≙ ∑bt≙a ℓt(yt) −
ℓt(y(j)t).
Proof. For ease of notation we let y

(i)
t ≙ ⟨xt,w(i)t ⟩, where w

(i)
t is the output of algorithm Ai, and

slightly abuse notation by writing ℓt(y) ≙ 1
2
(yt−y)2 for y ∈ R. Hence, we may write ℓt(wt) ≡ ℓt(y(i)t)

185

interchangeably. Note that this equivalence is valid in the improper online learning setting since

the features are observed before the learner makes a prediction, as discussed in the introduction.

Now, for for any j ∈ [N∥ we have

R[a,b∥(u) ≙ b

∑
t≙a

ℓt(yt) − ℓt(ut)
≙

b

∑
t≙a

ℓt(w(j)t) − ℓt(ut) + b

∑
t≙a

ℓt(yt) − ℓt(w(j)t)
≙ R

Aj[a,b∥(u) + b

∑
t≙a

ℓt(yt) − ℓt (y(j)t) ,
where we have observed y

(j)
t ≙ ⟨xt,w(j)t ⟩. Observe that by Lemma C.2.7 we have

ℓt(y(j)t) ≥ 1

2
M2
t −

1

2
M2
t+1 +

1

2
(yt − y(j)t)2

≙
1

2
M2
t −

1

2
M2
t+1 + ℓt (y(j)t) ,

where Mt ≙maxs<t ∣ys − yRef
s ∣. Hence,

R[a,b∥(u) ≤ RAj[a,b∥(u) + b

∑
t≙a

ℓt(yt) − ℓt (y(j)t)
≤ R

Aj[a,b∥(u) + b

∑
t≙a

ℓt(yt) − ℓt (y(j)t)
+

b

∑
t≙a

1

2
M2
t+1 −

1

2
M2
t

≤
1

2
M2
b+1 +R

Aj[a,b∥(u) + b

∑
t≙a

ℓt(yt) − ℓt (y(j)t)
´¹¹¹¸¹¹¹¶

≙∶RMeta

[a,b∥
(ej)

186

Proof of Theorem 10.3.1

Theorem 10.3.1. Let AMeta be an instance of Algorithm 15 with αt ≙
1

2maxt,i ℓt(y(i)t) , βt+1 ≙
1(e+t) log2(e+t)+1 and p1 ≙ 1N/N . Then for any sequence u ≙ (u1, . . . , uT) in R and any j ∈ [N∥,

Algorithm 13 guarantees

R[a,b∥(u) ≤ O (RAj[a,b∥(u) +max
t
(yt − ỹt)2 log (Nb log2(b))) ,

where R[a,b∥ denotes regret over the sub-interval [a, b∥.
Proof. The proof follows almost immediately using the regret guarantee of the range-clipped meta-

algorithm (Lemma C.2.9), from which we have

R[a,b∥(u) ≤ 1

2
max
t
(yt − ỹt)2 +RAj[a,b∥(u) +RMeta[a,b∥ (ej).

Now applying the guarantee of an appropriate instance of the őxed-share algorithm (Theorem C.2.12

with αt ≙
1

2maxt,i ℓt(y(i)t) , βt ≙
1(e+t) log2(e+t)+1 , and p1 ≙ 1N/N), we have

RMeta[a,b∥ (ej) ≤ 1

αb+1
[2 log(1

βb+1p1j
) + 1]

≤max
t,i

ℓt(y(i)t) [2 log (((e + b) log2(e + b) + 1)N) + 1]
≤ O (max

t
(yt − ỹt)2 log (b log2(b)N)) ,

where the last line applies Lemma C.2.7 and hides constants. All together, we have

R[a,b∥(u) ≤ O (RAj[a,b∥(u) +max
t
(yt − ỹt)2 log (Nb log2(b))) .

Proof of Theorem 10.3.2

The proof of Theorem 10.3.2 follows by applying Theorem 10.3.1, and then showing that there exists

a Aγ which attains the desired bound. We őrst provide proof of the latter claim in Lemma C.2.10

for the sake of modularity. In particular, we will also re-use this result to argue strongly-adaptive

guarantees in Section 10.4. Proof of Theorem 10.3.2 is then easily proven at the end of this section.

187

Lemma C.2.10. Let b > 1, ηmin ≙ 2d, ηmax ≙ dT , and deőne Sη ≙ {ηi ≙ ηminb
i
∧ ηmax ∶ i ≙ 0,1, . . .}

and Sγ ≙ {γi ≙ ηi
1+ηi
∶ i ≙ 0,1, . . .} ∪ {0}. For any γ in Sγ, let Aγ denote an instance of Algo-

rithm 12 with discount γ. Then for any u ≙ (u1, . . . , uT) in R
d, there is a γ∗ ∈ [0,1∥ satisfying

γ∗ ≙

√
d∑

T
t≙1

1

2
(yt−ỹt)2√

d∑
T
t≙1

1

2
(yt−ỹt)2+

√
P
γ∗

T
(u) and a γ ∈ Sγ such that

R
Aγ
T (u) ≤ O⎛⎝dmax

t
(yt − ỹt)2 log (T) + b

¿ÁÁÀdP
γ∗

T (u) T∑
t≙1

(yt − ỹt)2⎞⎠.
Proof. Denote VT ≙

d
2 ∑Tt≙1(yt − ỹt)2. By Lemma C.2.5, there exists a γ∗ ∈ [0,1∥ such that

γ∗ ≙

√
VT√

VT +
√
P
γ∗

T (u) .

Throughout the proof it will be convenient to work in terms of the related quantity η∗ ≙ γ∗

1−γ∗
≙√

VT
P
γ
T
(u) . Let us őrst suppose that 0 ≤ η∗ ≤ ηmin. In this case, we have

η∗ ≙

¿ÁÁÀ VT

P
γ∗

T (u) ≤ ηmin Ô⇒

¿ÁÁÀ1

2

T

∑
t≙1

(yt − ỹt)2 ≤ ηmin

√
1

d
P
γ
T (u).

Consider the algorithm A0 with γ ≙ 0: in this case we have wt ≙ argminw∈Rd ht(w), so ⟨xt,wt⟩ ≙ ỹt
and the regret is trivially

T

∑
t≙1

ℓt(wA0

t) − ℓt(ut) ≤ T

∑
t≙1

1

2
(yt − ỹt)2

≙

¿ÁÁÀ T

∑
t≙1

1

2
(yt − ỹt)2 T

∑
t≙1

1

2
(yt − ỹt)2

≤
ηmin√
d

¿ÁÁÀP
γ∗

T (u) T∑
t≙1

1

2
(yt − ỹt)2

≙ 2

√
VTP

γ∗

T (u) (C.24)

for ηmin ≙ 2d.

188

Otherwise, for η∗ ≥ ηmin, using Theorem 10.2.1 we have that for any γ ∈ Sγ ,

R
Aγ
T (u) ≤ γλ2 ∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ γ
T−1

∑
t≙1

[F γt (ut+1) − F γt (ut)∥ + log (1/γ)VT
(∗)
≤
γλ

2
∥u1∥22 + d2 max

t
(yt − ỹt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
)

+ η∗P
γ∗

T (u) + VTη

where (∗) observes that ηmin ≙
γmin

1−γmin

≤ η∗ ≙ γ∗

1−γ∗
Ô⇒ γmin ≤ γ

∗ and applies Lemma 10.2.2 (with

β ≙ γ∗) and substitutes η ≙ γ
1−γ

. If η∗ ≥ ηmax then choosing η ≙ ηmax ≙ dT yields

VT

η
≙

d

2dT

T

∑
t≙1

(yt − ỹt)2 ≤ 1

2
max
t
(yt − ỹt)2,

and otherwise, there is an ηk in Sη such that ηk ≤ η
∗ ≤ bηk, so choosing η ≙ ηk yields

VT

ηk
≤ b

VT

η∗
≙ b

√
P
γ∗

T (u)VT
Hence, overall we have that there is a γ ∈ Sγ such that

R
Aγ
T (u) ≤ γλ2 ∥u1∥22 + 1

2
max
t
(yt − ỹt)2 [d log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
) ∨ 1] + η∗P γ∗T (u) + bVTη∗

≙
γλ

2
∥u1∥22 + 1

2
max
t
(yt − ỹt)2 [d log(1 + ∑Tt≙1 γT−t ∥xt∥22

λd
) ∨ 1] + (b + 1)√VTP γ∗T (u)

≤ O
⎛⎜⎝dmax

t
(yt − ỹt)2 log (T) ∨ b

¿ÁÁÀdP
γ∗

T (u) T∑
t≙1

(yt − ỹt)2⎞⎟⎠ .

With the previous lemma in hand, the proof of Theorem 10.3.2 follows easily. The theorem is

re-stated for convenience.

189

Theorem 10.3.2. Let b > 1, ηmin ≙ 2d, ηmax ≙ dT , and for all i ∈ N let ηi ≙ ηminb
i
∧ ηmax, and

construct the set of discount factors Sγ ≙ {γi ≙ ηi
1+ηi
∶ i ∈ N}∪{0} . For any γ in Sγ, let Aγ denote an

instance of Algorithm 12 with discount γ.1 Let AMeta be an instance of the algorithm characterized

in Theorem 10.3.1, and suppose we set yRef
t ≙ ỹt for all t. Then for any u ≙ (u1, . . . , uT) in R

d,

Algorithm 13 guarantees

RT (u) ≤ O(dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ∗

T (u) T∑
t≙1

(yt − ỹt)2)
where γ∗ ∈ [0,1∥ satisőes Equation (10.2).

Proof. Applying Theorem 10.3.1, for any sequence u ≙ (u1, . . . , uT) in R
d and any γ ∈ Sγ we have

RT (u) ≤ Ô (RAγT (u) +max
t
(yt − yRef

t)2 log (NT))
≤ Ô (RAγT (u) +max

t
(yt − yRef

t)2 log (T)) , (C.25)

where the last line uses N ≙ ∣Sγ ∣ ≙ logb(ηmax/ηmin) ≤ O(logb(T)), then hides log(log) factors.

Finally, by Lemma C.2.10, there is indeed a γ∗ ∈ [0,1∥ satisfying γ∗ ≙

√
d∑

T
t≙1

1

2
(yt−ỹt)2√

d∑
T
t≙1

1

2
(yt−ỹt)2+

√
P
γ∗

T
(u) and

a γ ∈ Sγ such that

R
Aγ
T (u) ≤ O⎛⎜⎝dmax

t
(yt − ỹt)2 log (T) + b

¿ÁÁÀdP
γ∗

T (u) T∑
t≙1

(yt − ỹt)2⎞⎟⎠ .
Plugging this back into Equation (C.25) and choosing yRef

t ≙ ỹt proves the result.

Proof of Theorem 10.3.3

As in Appendix C.2.4, the proof of Theorem 10.3.3 follows by applying Theorem 10.3.1 and then

showing that there is a Aγ attaining the desired regret bound. We őrst provide proof of the latter

claim in Lemma C.2.11 for the sake of modularity, so that we can use it when arguing strongly-

adaptive guarantees in Section 10.4. Proof of Theorem 10.3.3 is proven at the end of this section.

1For brevity, here we refer to an algorithm that directly predicts ỹt on every round as being an instance of the
discounted VAW forecaster with γ ≙ 0. This terminology can be justiőed by Remark C.2.2, but for our purposes here
it’s sufficient to consider it convenient alias.

190

Lemma C.2.11. Under the same conditions as Lemma C.2.10, suppose each Aγ sets hints ỹt ≙

y
γ
t ≙ ClipBt(⟨xt,wγt ⟩), where Bt ≙ [yRef

t −Mt, y
Ref
t +Mt∥ and Mt ≙ maxs<t ∣ys − yRef

s ∣. Then for any

u ≙ (u1, . . . , uT) in W , there is a γ○ ∈ [0,1∥ satisfying γ○ ≙

√
d∑

T
t≙1 ℓt(ut)√

d∑
T
t≙1 ℓt(ut)+

√
dP

γ○

T
(u) and a γ ∈ Sγ such

that

R
Aγ
T (u) ≤ O(dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T)
+ b

¿ÁÁÀdP
γ○

T (u) T∑
t≙1

ℓt(ut)),
where γmin ≙min{γ ∈ Sγ} ≙ 2d

2d+1
.

Proof. Using Lemma C.2.6, for any u ≙ (u1, . . . , uT), γ ∈ (0,1), and β ≥ γ ≥ γmin ≙
2d

2d+1
, we have

RT (u) ≤ γλ ∥u1∥22 + 4dmax
t
(yt − yRef

t)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd
)

+ 2
β

1 − β
P
β
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut),
We will proceed by showing that there is a β and γ that suitably balances the summations in

the last line. To this end, recall that by Lemma C.2.5, there is a γ○ satisfying

γ○ ≙

√
d∑Tt≙1 ℓt(ut)√

d∑Tt≙1 ℓt(ut) +√P γ○T (u)
Denote η ≙ γ

1−γ
and η○ ≙ γ○

1−γ○
≙

√
d∑

T
t≙1 ℓt(ut)
P
γ○

T
(u) . If η○ ≥ ηmax ≙

γmax

1−γmax
, then we can take β ≙ γ○ and

γ ≙ γmax to get

β

1 − β
P
β
T (u) + γ

1 − γ
d
T

∑
t≙1

ℓt(ut) ≙ η○P γ○T (u) + d∑Tt≙1 ℓt(ut)ηmax

≙

¿ÁÁÀdP
γ○

T (u) T∑
t≙1

ℓt(ut) + d∑Tt≙1 ℓt(ut)
ηmax

≤

¿ÁÁÀdP
γ○

T (u) T∑
t≙1

ℓt(ut) +max
t
ℓt(ut),

where the last line recalls ηmax ≙ dT . Otherwise, if η○ ≤ ηmin ≙
γmin

1−γmin

≙ 2d, then taking β ≙ γ ≙ γmin

191

yields

ηminP
γmin

T (u) + d∑Tt≙1 ℓt(ut)
ηmin

≤ ηminP
γmin

T (u) + d∑Tt≙1 ℓt(ut)
η○

≙ 2dP
γmin

T (u) +
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut).
Lastly, if ηmin ≤ η

○ ≤ ηmax, there is a ηk ≙
γk

1−γk
∈ Sη such that ηk ≤ η

○ ≤ bηk, so choosing β ≙ γ○ and

γ ≙ γk yields

η○P
γ○

T (u) + d∑Tt≙1 ℓt(ut)ηk
≤ η○P

γ○

T (u) + bd∑Tt≙1 ℓt(ut)η○

≙ (b + 1)
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)
Combining the three cases, we have

2
β

1 − β
P
β
T (u) + 1 − γ

γ
2d

T

∑
t≙1

ℓt(ut) ≤ 4dP γmin

T (u) + 2max
t
ℓt(ut) + 2(b + 1)

¿ÁÁÀdP
γ○

T (u) T∑
t≙1

ℓt(ut)

Hence, overall the regret can be bound as

R
Aγ
T (u) ≤ γλ ∥u1∥22 + dmax

t
(yt − yγt)2 log(1 + ∑Tt≙1 γT−t ∥xt∥22λd

)
+ 4dP

γmin

T (u) + 2max
t
ℓt(ut) + 2(b + 1)

¿ÁÁÀdP
γ○

T (u) T∑
t≙1

ℓt(ut)
≤ O
⎛⎜⎝dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)⎞⎟⎠ ,
where we’ve applied Lemma C.2.7 to bound maxt(yt − yγt)2 ≤ 4M2

T+1 ≙ 4maxt(yt − yRef
t)2. Plugging

this back into Equation (C.26) proves the stated bound.

Now the proof of Theorem 10.3.3 follows by composing Theorem 10.3.1 and Lemma C.2.11. The

theorem is restated below for convenience.

192

Theorem 10.3.3. Under the same conditions as Theorem 10.3.2, suppose each Aγ sets hints ỹt ≙

y
γ
t ≙ ClipBt(⟨, xt,wγt ⟩), where Bt ≙ [yRef

t −Mt, y
Ref
t +Mt∥ and Mt ≙ maxs<t ∣ys − yRef

s ∣. Then for any

u ≙ (u1, . . . , uT) in R
d, Algorithm 13 guarantees

RT (u) ≤ O(dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut))
where γmin ≙

2d
2d+1

and γ○ ∈ [0,1∥ satisőes Equation (10.3).

Proof. As in the proof of Theorem 10.3.2, we apply Theorem 10.3.1, from which it follows that for

any u ≙ (u1, . . . , uT) in R
d and any γ ∈ Sγ , the dynamic regret is bounded as

RT (u) ≤ Ô (RAγT (u) +max
t
(yt − yRef

t)2 log (NT))
≤ Ô (RAγT (u) +max

t
(yt − yRef

t)2 log (T)) , (C.26)

where the last line uses N ≙ ∣Sγ ∣ ≙ logb(ηmax/ηmin) ≤ O(logb(T)), then hides log(log) factors. And

using Lemma C.2.11, for any u ≙ (u1, . . . , uT) there is a γ○ ∈ [0,1∥ satisfying γ○ ≙

√
d∑

T
t≙1 ℓt(ut)√

d∑
T
t≙1 ℓt(ut)+√P ○T (u)

and a γ ∈ Sγ such that

R
Aγ
T (u) ≤ O⎛⎜⎝dP γmin

T (u) + dmax
t
(yt − yRef

t)2 log (T) + b
¿ÁÁÀdP

γ○

T (u) T∑
t≙1

ℓt(ut)⎞⎟⎠ ,
Plugging this back into Equation (C.26) completes the proof.

193

C.2.5 Proofs for Section 3.2 (Strongly-Adaptive Guarantees)

In this section we provide a formal statement of the result sketched in Section 10.4. The result

follows easily from the results in Section 10.3, after borrowing the geometric covering intervals from

Daniely, Gonen, and Shalev-Shwartz (2015).

Theorem 10.4.1. Let Sγ be the set of discount factors deőned in Theorem 10.3.2, let S denote

a set of geometric covering intervals over [1, T ∥, and for each γ ∈ Sγ and I ∈ S, let Aγ,I be an

instance of Algorithm 12 using discount γ and applied during interval I. Let AMeta be an instance

of the meta-algorithm characterized in Theorem 10.3.1. Then for any [s, τ∥ ⊆ [1, T ∥, there is a set

of disjoint intervals I1, . . . , IK in S such that ∪Ki≙1Ii ≙ [s, τ∥, and moreover, for any u ≙ (us, . . . , uτ)
Algorithm 13 with yRef

t ≙ ỹt guarantees

R[s,τ∥(u) ≤ Ô⎛⎝dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ∗[s,τ∥(u) ∑

t∈[s,τ∥
(yt − ỹt)2⎞⎠

where P γ
∗

[s,τ∥(u) ≙ ∑Ki≙1 P γ∗iIi (u) and each γ∗i ∈ [0,1∥ satisőes γ∗i ≙

√
d
2
∑t∈Ii

(yt−ỹt)2√
d
2
∑t∈Ii

(yt−ỹt)2+
√
P
γ∗
i

Ii
(u)

.

If we instead suppose each Aγ,I sets hints as in Theorem 10.3.3, then for any u ≙ (us, . . . , uτ)
Algorithm 13 guarantees

R[s,τ∥(u) ≤ Ô⎛⎝dP γmin[s,τ∥(u) + dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ○[s,τ∥(u) ∑

t∈[s,τ∥
ℓt(ut)⎞⎠

where P γ
○

[s,τ∥(u) ≙ ∑Ki≙1 P γ○iIi (u) and each γ○i ∈ [0,1∥ satisőes γ○i ≙

√
d∑t∈Ii

ℓt(ut)
√
d∑t∈Ii

ℓt(ut)+
√
P
γ○
i

Ii
(u)

.

Proof. For any [s, τ∥ ⊆ [1, T ∥, Daniely, Gonen, and Shalev-Shwartz (2015, Lemma 1.2) shows that

there exists a disjoint set of intervals I1, . . . , IK in S such that ∪Ki≙1Ii ≙ [s, τ∥ and K ≤ O(log(τ −s)).
Hence, we can decompose ∑Ki≙1RIi(u), so applying Theorem 10.3.1 to each of these sub-intervals,

for any γ1, . . . γk ∈ Sγ we have:

R[s,τ∥(u) ≙ K

∑
i≙1

RIi(u) ≤ K

∑
i≙1

Ô (RAγi,IiIi
(u) +max

t
(yt − ỹt)2 log (N ∣Ii∣))

≤ Ô (K∑
i≙1

R
Aγi,Ii
Ii

(u) +Kmax
t
(yt − ỹt)2 log (N(τ − s)))

≤ Ô (K∑
i≙1

R
Aγi,Ii
Ii

(u) +max
t
(yt − ỹt)2 log2(T)) , (C.27)

where Ô(⋅) hides log(log) factors and the last line bounds K ≤ O(log(τ − s)) ≤ O(log(T)) and

194

N ≤ O(T log (T)). The bound on N can be seen from the fact that ∣Sγ ∣ ≤ O(log(T)), and from

the fact that S is constructed as S ≙ ∪
⌊log(T)⌋
i≙1 Si where Si ≙ {[k2i, (k + 1)2i − 1∥ ∶ k ≙ 0,1, . . .}, from

which it is easily seen that ∣S∣ ≤ O(T) by observing that each Si has at most T /2i intervals, hence

summing them all up yields ∣S∣ ≙ ∑⌊log(T)⌋i≙1 ∣Si∣ ≤ O(T).
Now for any interval Ii, Lemma C.2.10 shows that there is a γ∗i ∈ [0,1∥ satisfying

γ∗i ≙

√
d∑t∈Ii 1

2
(yt − ỹt)2√

d∑t∈Ii 1
2
(yt − ỹt)2 +

√
P
γ∗
i

Ii
(u)

and a γi ∈ Sγ such that

R
Aγi,Ii
Ii

(u) ≤ O⎛⎜⎝dmax
t
(yt − ỹt)2 log (∣Ii∣) + b

¿ÁÁÀdP
γ∗
i

Ii
(u)∑

t∈Ii

(yt − ỹt)2⎞⎟⎠
so summing these up and applying Cauchy-Schwarz inequlity leads to

K

∑
i≙1

R
Aγ,Ii
Ii
(u) ≤ O⎛⎜⎝Kdmax

t
(yt − ỹt)2 log (∣Ii∣) + K

∑
i≙1

b

¿ÁÁÀdP
γ∗
i

Ii
(u)∑

t∈Ii

(yt − ỹt)2⎞⎟⎠
≤ O
⎛⎝dmax

t
(yt − ỹt)2 log2(τ − s) + b√dP

γ∗[s,τ∥(u) ∑
t∈[s,τ∥

(yt − ỹt)2⎞⎠
where we’ve deőned P

γ∗[s,τ∥(u) ≙ ∑Ki≙1 P γ∗iIi (u). Plugging this back into Equation (C.27), overall we

may bound:

R[s,τ∥(u) ≤ Ô⎛⎝dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ∗[s,τ∥(u) ∑

t∈[s,τ∥
(yt − ỹt)2⎞⎠

where we’ve chosen ỹt ≙ y
Ref
t for simplicity.

An identical argument holds for the second statement: for any interval Ii, Lemma C.2.11 shows

that there is a γ○i ∈ [0,1∥ satisfying γ○i ≙

√
d∑t∈Ii

ℓt(ut)
√
d∑t∈Ii

ℓt(ut)+
√
P
γ○
i

Ii
(u)

and a γi ∈ Sγ such that

R
Aγi,Ii
Ii

(u) ≤ O⎛⎝dP γmin

Ii
(u) + dmax

t
(yt − yRef

t)2 log (∣Ii∣) + b√dP
γ○
i

Ii
(u)∑

t∈Ii

ℓt(ut)⎞⎠

195

so summing these up and applying Cauchy-Schwarz inequality again leads to

K

∑
i≙1

R
Aγ,Ii
Ii
(u) ≤ O⎛⎝dP γmin[s,τ∥(u) +Kdmax

t
(yt − ỹt)2 log (∣Ii∣) + K

∑
i≙1

b

√
dP

γ○

Ii
(u)∑

t∈Ii

ℓt(ut)⎞⎠
≤ O
⎛⎝dP γmin[s,τ∥(u) + dmax

t
(yt − ỹt)2 log2(τ − s) + b√dP

γ○[s,τ∥(u) ∑
t∈[s,τ∥

ℓt(ut)⎞⎠
where we’ve deőned P γ

∗

[s,τ∥(u) ≙ ∑Ki≙1 P γ∗iIi (u), so plugging this back into Equation (C.27), overall we

may bound:

R[s,τ∥(u) ≤ Ô⎛⎝dP γmin[s,τ∥(u) + dmax
t
(yt − yRef

t)2 log2(T) + b√dP
γ○[s,τ∥(u) ∑

t∈[s,τ∥
ℓt(ut)⎞⎠ ,

where we’ve deőned P γ
○

[s,τ∥ ≙ ∑Ki≙1 P
γ○i
Ii
(u).

Matching the Exp-concave Guarantee in Unbounded Domains

Recall from Section 10.2.2 that in the Exp-concave setting, the algorithm of Baby and Y.-X. Wang

(2021) achieves a dynamic regret bound of the formRT (u) ≤ Õ (T 1/3C2/3
T) for CT ≙ ∑T−1t≙1 ∥ut − ut−1∥1.

Our strongly-adaptive guarantees in Theorem 10.4.1 show that a bound of this form can be achieved

even in the unbounded domain setting. To see why, note that the essential intuition of Baby

and Y.-X. Wang (2021) is that if we have access to a strongly-adaptive algorithm guaranteeing

R[a,b∥(u) ≤ O(log(b − a)) static regret on all intervals [a, b∥ ⊆ [1, T ∥, then to attain the desired

bound up to log terms it suffices to show that there exists a set of intervals {I1, . . . , IN} partitioning[1, T ∥ such that N ≤ T 1/3C2/3
T and that the dynamic regret is bounded by the static regrets over

the partition, leading to regret matching O(T 1/3C2/3
T) up to logarithmic terms.

Our strongly-adaptive guarantee in Theorem 10.4.1 actually achieves a stronger guarantee than is

necessary to invoke the above argument, by guaranteeing O(log(b−a)∨√dP γ[a,b∥(u)∣b − a∣) dynamic

regret on every interval [a, b∥, and hence as a special case we have O(log(b − a)) static regret on

each interval as well. A similar partitioning argument then provides an analogous T 1/3C2/3
T bound,

even in unbounded domains. If this is surprising, note that the exp-concave (and hence bounded

domain) restriction is only really used to provide an algorithm which achieves logarithmic static

regret, not to construct the essential partition. In the online linear regression setting, we do not

need exp-concavity to guarantee logarithmic static regret Ð the VAW forecaster can provide the

necessary guarantee even in an unbounded domain.

196

C.2.6 Adaptive Fixed-share

Algorithm 15: Adaptive Fixed-Share

1 Input: Experts A1, . . . ,AN , p1 ∈∆N

2 for t ≙ 1 ∶ T do

3 Get y
(i)
t from Ai for all i

4 Play yt ≙ ∑Ni≙1 ptiy(i)t
5 Observe loss ℓt(y) ≙ 1

2
(yt − y)2 and let ℓti ≙ ℓt(y(i)t) for all i

6 Let qt+1,i ≙
pti exp(−αtℓti)

∑
N
j≙1 ptj exp(−αtℓtj) for all i

7 Choose βt+1 and set pt+1 ≙ (1 − βt+1)qt+1 + βt+1p1
8 end

In this section, we provide for completeness analysis related to the őxed-share algorithm Nicolo

Cesa-Bianchi, Gaillard, et al. 2012 with time-varying modulus. The following is a modest general-

ization of the analysis of Hazan (2019, Theorem 10.3). Throughout this section we assume that the

losses ℓt ∶ Ŷ→ R are exp-concave in their domain.

Theorem C.2.12. For all t let ℓt be an αt-Exp-Concave function and assume that αt ≥ αt+1 for

all t. For all t, set βt ≤
1(e+t) log2(e+t)+1 . Then for any j ∈ [N∥ and any [a, b∥ ⊆ [1, T ∥, Algorithm 15

guarantees

b

∑
t≙a

ℓt(yt) − ℓt(y(j)t) ≤ 1

αb+1
[2 log(1

βb+1p1j
) + 1]

Proof. The heavy lifting is done mostly using Lemma C.2.13, after which the proof follows by choos-

ing the sequence of mixing parameters βt. Applying Lemma C.2.13 and observing the telescoping

197

sum, we have

b

∑
t≙a

ℓt(yt) − ℓt (y(j)t) ≤ b

∑
t≙a

1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+

b

∑
t≙a

1

αt
log (1

1 − βt+1
)

+

b

∑
t≙a

∣ 1

αt+1
−

1

αt
∣ log(1

βt+1p1j
)

≙
1

αa
log(1

paj
) − 1

αb+1
log(1

pb+1,j
)

+

b

∑
t≙a

1

αt
log (1

1 − βt+1
)

+

b

∑
t≙a

∣ 1

αt+1
−

1

αt
∣ log(1

βt+1p1j
) .

Now observe that with βt+1 ≤
1(e+t) log2(e+t)+1 , using the elementary inequality log (1 + y) ≤ y we have

log (1

1 − βt+1
) ≙ log (1 + βt+1

1 − βt+1
) ≤ βt+1

1 − βt+1
≙

1(e + t) log2(e + t)
so for non-increasing αt we have

b

∑
t≙a

1

αt
log (1

1 − βt+1
) ≤ b

∑
t≙a

1

αt

1(e + t) log2(e + t)
≤

1

αb

b

∑
t≙a

1(e + t) log2(e + t)
≤

1

αb
∫

e+b

e

1

y log2 y
dy

≙
1

αb

−1

log (y)
RRRRRRRRRRR
e+b

y≙e

≤
1

αb

and similarly,

b

∑
t≙a

∣ 1

αt+1
−

1

αt
∣ log(1

βt+1p1j
) ≤ log(1

βb+1p1j
) b

∑
t≙a

1

αt+1
−

1

αt

≤
1

αb+1
log(1

βb+1p1j
) ,

198

so overall we have

b

∑
t≙a

ℓt(yt) − ℓt (y(j)t) ≤ 1

αa
log(1

paj
) − 1

αb+1
log(1

pb+1,j
) + log (1

βb+1p1j
) + 1

αb+1

≙
1

αa
log(1

paj
) + log (pb+1,j

βb+1p1j
) + 1

αb+1

≤
1

αb+1
log(1(1 − βa)qaj + βap1j) +

log (pb+1,j
βb+1p1j

) + 1
αb+1

≤
1

αb+1
[2 log(1

βb+1p1j
) + 1] ≤

Proof of Lemma C.2.13

The following provides an initial one-step bound to work from, which we use in the proof of Theo-

rem C.2.12.

Lemma C.2.13. For all t let ℓt be an αt-Exp-Concave function. Then for any j ∈ [N∥, Algorithm 15

guarantees

ℓt(yt) − ℓt(y(j)t) ≤ 1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+
1

αt
log (1

1 − βt+1
)

+ ∣ 1

αt+1
−

1

αt
∣ log(1

βt+1p1j
)

Proof. By αt-Exp-Concavity of ℓt, we have that y ↦ exp (−αtℓt(y)) is concave. Hence, applying

Jensen’s inequality:

exp (−αtℓt(yt)) ≥ N

∑
i≙1

pti exp (−αtℓt (y(i)t)) ≙ N

∑
i≙1

pti exp (−αtℓti)
and taking the natural logarithm of both sides we have

−αtℓt(yt) ≥ log(N∑
i≙1

pti exp (−αtℓti))
ℓt(yt) ≤ − 1

αt
log(N∑

i≙1

pti exp (−αtℓti)) .

199

Hence, for any j ∈ [N∥ we have

ℓt(yt) − ℓt (y(j)t) ≤ − 1

αt
log(N∑

i≙1

pti exp (−αtℓti)) − ℓtj
≙ −

1

αt
log(N∑

i≙1

pti exp (−αtℓti)) + 1

αt
log (exp (−αtℓtj))

≙
1

αt
log(exp (−αtℓtj)

∑Ni≙1 pti exp (−αtℓti))
≙

1

αt
log(ptj exp (−αtℓtj)

ptj∑Ni≙1 pti exp (−αtℓti))
≙

1

αt
[log(qt+1,j

ptj
)]

≙
1

αt
[log(1

ptj
) − log(1

qt+1,j
)] .

Adding and subtracting 1
αt+1

log (1
pt+1,j

),
ℓt(yt) − ℓt (y(j)t) ≤ 1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+
1

αt+1
log(1

pt+1,j
) − 1

αt
log(1

qt+1,j
)

≙
1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+
1

αt
log(1

pt+1,j
) − 1

αt
log(1

qt+1,j
)

´¹¹¸¹¹¶
log(qt+1,j/pt+1,j)/αt

+ [1

αt+1
−

1

αt
] log(1

pt+1,j
)

200

recalling pt+1,j ≙ (1 − βt+1)qt+1,j + βt+1p1j ,
≙

1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+
1

αt
log(qt+1,j(1 − βt+1)qt+1,j + βt+1p1j)

+ [1

αt+1
−

1

αt
] log(1(1 − βt+1)qt+1,j + βt+1p1j)

≤
1

αt
log(1

ptj
) − 1

αt+1
log(1

pt+1,j
)

+
1

αt
log (1

1 − βt+1
)

+ ∣ 1

αt+1
−

1

αt
∣ log(1

βt+1p1j
)

C.2.7 Supporting Lemmas

The following provides a useful relation between the squared loss and its Bregman divergence.

Lemma C.2.14. Let ℓt(w) ≙ 1
2
(yt − ⟨xt,wt⟩)2. Then for any u,w ∈W ,

Dℓt(u∣w) ≙ 1

2
⟨xt, u −w⟩2

Proof. By deőnition of Bregman divergence, we have:

Dℓt(u∣w) ≙ ℓt(u) − ℓt(w) − ⟨∇ℓt(w), u −w⟩ .
Expanding the deőnition of ℓt, we have

ℓt(u) − ℓt(w) ≙ 1

2
(yt − ⟨xt, u⟩)2 − 1

2
(yt − ⟨xt,w⟩)2

≙
1

2
y2t +

1

2
⟨xt, u⟩2 − yt ⟨xt, u⟩ − 1

2
y2t −

1

2
⟨xt,w⟩2 + yt ⟨xt,w⟩

≙
1

2
⟨xt, u⟩2 − 1

2
⟨xt,w⟩2 + yt ⟨xt,w − u⟩ .

Moreover, we have

− ⟨∇ℓt(w), u −w⟩ ≙ ⟨(yt − ⟨xt,w⟩)xt, u −w⟩
≙ −yt ⟨xt,w − u⟩ + ⟨xt,w⟩2 − ⟨xt,w⟩ ⟨xt, u⟩ ,

201

so combining with the previous display we have

ℓt(u) − ℓt(w) − ⟨∇ℓt(w), u −w⟩ ≙ 1

2
⟨xt, u⟩2 − 1

2
⟨xt,w⟩2 + yt ⟨xt,w − u⟩

− yt ⟨xt,w − u⟩ + ⟨xt,w⟩2 − ⟨xt,w⟩ ⟨xt, u⟩
≙
1

2
⟨xt, u⟩2 + 1

2
⟨xt,w⟩2 − ⟨xt,w⟩ ⟨xt, u⟩

≙
1

2
(⟨xt, u⟩ − ⟨xt,w⟩)2

≙
1

2
⟨xt, u −w⟩2 .

The following provides a discounted version of the log-determinant lemma.

Lemma C.2.15. Let γ ∈ (0,1∥, λ > 0, xt ∈ Rd, and deőne M0 ≙ λI and Mt ≙ xtx
⊺

t + γMt−1 for each

t > 0. Then for any sequence ∆1,∆2, . . . in R,

T

∑
t≙1

∆2
t ∥xt∥2M−1

t
≤ d log (1/γ)∆2

1∶T +max
t

∆2
td log(1 + ∑Tt≙1 γT−t ∥xt∥22λd

)
Proof. By deőnition we have Mt ≙ xtx

⊺

t +γMt−1, so re-arranging and taking the determinant of both

sides we have

Det (γMt−1) ≙ Det (Mt − xtx
⊺

t) ≙ Det (Mt)Det(I −M−
1

2

t xtx
⊺

tM
−

1

2

t)
≙ Det (Mt) (1 − ∥xt∥2M−1

t
)

where the last line uses the fact that Det (I − yy⊺) ≙ 1 − ∥y∥22. Re-arranging, using Det (γMt−1) ≙
γdDet (Mt−1), and using the fact that 1 − x ≤ − log (x) we have

T

∑
t≙1

∆2
t ∥xt∥2M−1

t
≙

T

∑
t≙1

∆2
t [1 − γdDet (Mt−1)

Det (Mt)]
≤

T

∑
t≙1

∆2
t log(Det (Mt)

γdDet (Mt−1))
≙

T

∑
t≙1

∆2
td log (1/γ) + T

∑
t≙1

∆2
t log(Det (Mt)

Det (Mt−1))
≤ d log (1/γ)∆2

1∶T +max
t

∆2
t log(T∏

t≙1

Det (Mt)
Det (Mt−1))

≙ d log (1/γ)∆2
1∶T +max

t
∆2
t log(Det (MT)

Det (M0)) .

202

Observe that Det (M0) ≙ Det (λI) ≙ λd, and using AM-GM inequality we have

Det (MT) ≤ (Tr (Mt)
d

)d ≙ ⎛⎝
Tr (λγT I +∑Tt≙1 γT−txtx⊺t)

d

⎞⎠
d

≙ (dλγT +∑Tt≙1 γT−t ∥xt∥22
d

)d ,

Hence
Det(MT)
Det(M0) ≤ (dλγT+∑Tt≙1 γT−t∥xt∥22dλ

)d, so overall we have

T

∑
t≙1

∆2
t ∥xt∥2M−1

t
≤ d log (1/γ)∆2

1∶T +max
t

∆2
t log

⎛⎝(dλγ
T
+∑Tt≙1 γT−t ∥xt∥22

λd
)d⎞⎠

≙ d log (1/γ)∆2
1∶T +max

t
∆2
td log(dλγT +∑Tt≙1 γT−t ∥xt∥22λd

)
≤ d log (1/γ)∆2

1∶T +max
t

∆2
td log(1 + ∑Tt≙1 γT−t ∥xt∥22λd

)

Note that the Lemma C.2.15 also immediately gives us the usual log determinant lemma as a

special case where γ ≙ 1:

Lemma C.2.16. Let λ > 0, xt ∈ R
d, and deőne Let M0 ≙ λI and Mt ≙ xtx

⊺

t +Mt−1 for each t > 0.

Then for any sequence ∆1,∆2, . . . in R,

T

∑
t≙1

∆2
t ∥xt∥2M−1

t
≤ dmax

t
∆2
t log(1 + ∑Tt≙1 ∥xt∥22λd

)

203

	Preface
	Acknowledgements
	Introduction
	Outline and Contributions
	Notations

	I Foundations
	Online Learning
	Minimizing Regret
	Adaptivity in Online Learning
	Principles for Adaptive Algorithm Design

	Learning in Dynamic Environments
	Dynamic Regret
	Strongly-adaptive Regret

	Centered Mirror Descent
	Incorporating Post-hoc Adjustments
	Conclusions

	II Adaptivity in Stationary Settings
	Overview of Part II
	Lipschitz Losses
	Parameter-free Learning
	Lipschitz Adaptivity and Scale-free Learning
	Adapting to Gradient Variability
	Trade-offs in the Horizon Dependence
	Conclusions

	Beyond Lipschitz Losses
	Online Learning with Quadratically Bounded Losses
	Unconstrained Saddle-point Optimization
	Example: Bilinearly-coupled saddle-points

	Conclusions

	III Adapting to Non-stationarity
	Overview of Part III
	Non-stationarity in Online Learning
	Lipschitz Losses
	A Simple Reduction for Dynamic Regret in Unbounded Domains
	Amortized Computation for Dynamic Regret

	Unbounded Losses
	Conclusions

	Non-stationarity in Online Linear Regression
	The Vovk-Azoury-Warmuth Forecaster
	Dynamic Regret via Discounting
	Small-loss Bounds via Self-confident Predictions
	Dimension-dependent Lower Bound

	Learning the Optimal Discount Factor
	Strongly-Adaptive Guarantees
	Conclusion

	Appendices
	Part I (Foundations)
	A Strong Mirror Descent Lemma
	Proofs for Chapter 4 (Centered Mirror Descent)
	Proof of Lemma 4.0.1
	Proof of Lemma 4.0.2
	Proof of Lemma 4.1.1

	Supporting Lemmas

	Part II (Adaptivity in Stationary Settings)
	Details for Chapter 6
	Proofs for Section 6.1 (Parameter-free Learning)
	Proofs for Section 6.3 (Adapting to Gradient Variability)
	Proofs for Section 6.2 (Lipschitz Adaptivity and Scale-free Learning)
	Proofs for Section 6.4 (Trade-offs in the Horizon Dependence)

	Details for Chapter 7
	Proofs for Section 7.1 (Online Learning with Quadratically Bounded Losses)
	Multi-scale Experts Algorithm

	Part III (Adapting to Non-stationarity)
	Details for Chapter 9
	Proofs for Section 9.1 (Lipschitz Losses)
	Proofs for Section 9.2 (Unbounded Losses)

	Details for Chapter 10
	Proofs for Section 10.2 (Dynamic Regret via Discounting)
	Proofs for Section 10.2.1 (Small-loss Bounds via Self-confident Predictions)
	Proofs for Section 10.2.2 (Dimension-dependent Lower Bound)
	Proofs for Section 10.3 (Learning the Optimal Discount Factor)
	Proofs for Section 3.2 (Strongly-Adaptive Guarantees)
	Adaptive Fixed-share
	Supporting Lemmas

